いばらきカーボンニュートラル産業拠点創出推進協議会

於:オンライン開催

2021年8月3日(15:10-15:35)

資料4

カーボンニュートラルに向けた 産業のあり方

平野 創(ひらの そう) 成城大学経済学部教授

業種により異なる影響

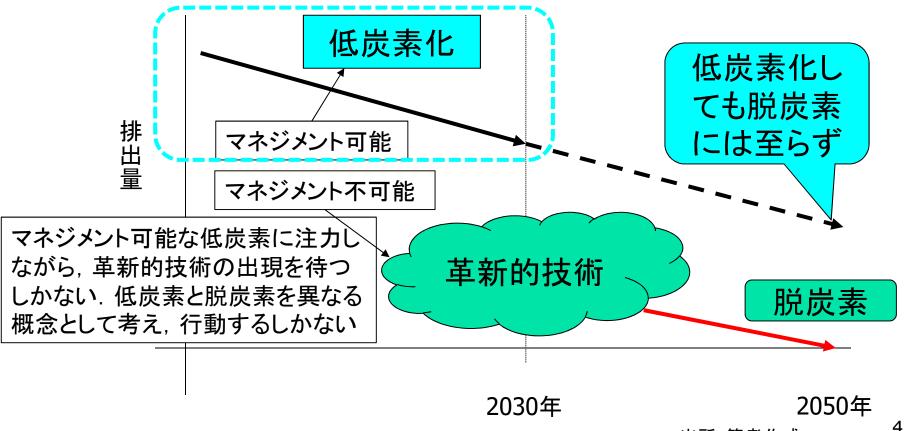
1. はじめに(結論)

- 業種によって異なる影響
 - √ (1)製造業(特に、製造工程でCO2が副生する産業、製法転換を 伴う産業)では難易度が高い、現時点では低炭素化が重要、例: 鉄鋼業、セメント産業、化学産業など
 - √ (2)エネルギー産業においては、困難が伴うも基本的構造は変化せず、実現の見通しが立ちやすい
- 【結論①】エネルギー部門が製造業に先行して脱炭素化を進め、製造業がそれに追随する『段階的なカーボンニュートラル戦略』が必要⇒CNP形成は重要
- ▶【結論②】製造業は「低炭素に向けた取組」の着実な遂行、 ものづくりを継続しながらの粘り強い技術開発が重要.。

2. カーボンニュートラルと製造業製造業に関する結論

2. カーボンニュートラルと製造業

- 製造業に関する結論(なぜ困難なのか?)
- ① 低炭素化の先にカーボンニュートラルは存在せず
 - ✓ 現状の削減量が線形で継続しても排出量ゼロとはほど遠い
 - → 革新的技術が不可欠であるが・・・
- ② しかも、現在想定しているすべての革新的技術が実現してもカーボンニュートラルの実現は困難な状況 しかしながら・・・
- ③ カーボンニュートラルを実現する革新的技術開発(既知・未知の双方の対象を含む)は、本質的にはマネジメント不可能



2. カーボンニュートラルと製造業

低炭素と脱炭素の関係性

■低炭素と脱炭素の関係性

次頁から事例を概観

出所:筆者作成

2. カーボンニュートラルと製造業

低炭素社会に向けた業界動向(鉄鋼)

エコプロセス

それぞれの生産量において想定されるCO2排出量(BAU排出量)から最先端技術の最大限の導入による2020年度の500万トゥーC02削減目標の内、省エネ等の自助努力に基づく300万トゥーC02削減の達成に傾注しつつ、廃プラ等については2005年度に対して集荷量を増やすことが出来た分のみを、削減実績としてカウントする

エコソリューション

エコプロセスで培った世界最高水準の省エネ技術を途上国を中心に移転・普及し、地球規模での削減に貢献(2020年度に推定約7,000万トン-CO2の削減貢献)

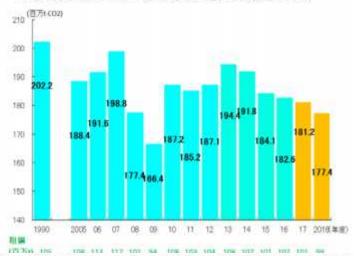
エコプロダクト

低炭素社会の構築に不可欠な高機能鋼材の供給を通じて、最終製品として使用される段階において排出削減に貢献

(2020年度に代表的な高機能鋼材により約3,400万トゥーCO2の削減貢献)

革新的プロセスの開発(COURSE50)

水素による鉄鉱石の還元と高炉ガスからの CO_2 分離回収により、生産工程における CO_2 排出量を約30%削減。2030年頃までに1号機の実機化**、高炉関連設備の更新タイミングを踏まえ、2050年頃までに普及を目指す。


※ CO。貯留に関するインフラ整備と実機化に経済合理性が確保されることが前提

5

- 削減見通し(簡便な推計)
- 線形変化(低炭素化の着実な進展)& 革新的技術等で最大限の効果が得ら れた場合の排出量削減見込み
- 低炭素化の実現:2007年から2018年の11年 間に2140万トン削減(1年あたり194.5万トン) ⇒同程度の削減が2020年から30年進むと想 定すると5835万トンの削減がみこまれる. 現 時点の排出量から引くと1.12億トンの排出量
- 革新的技術の成功(30%排出減):1.12億ト ン×7割=排出量は7840万トン
- 国際貢献:(日本の技術の国際展開寄与分 6553万トンを差し引いて, 排出量1287万トン ⇒カーボンニュートラルとは遠い

エネルギー起源CO。排出量 (毎年度のクレジット反映後の電力係数を反映)

設置基数 (基)	削減効果 (万t-CO2/年)
106	2,074
65	1,150
55	2,330
22	821
8	90
6	88
削減効果合計	6,553
	(3) 106 65 55 22 8 6

出所:日本鉄鋼連盟(2021)

2. カーボンニュートラルと製造業 低・脱炭素社会に向けた業界動向(化学)

- 化学産業も同様に推計
- ▶ 様々な省エネ対策を講じる
- ① 線形変化を想定すると今後30 年間で2970万トン削減(これま で年平均で99万トン削減)



2019年度実施 省工木対策実績

係数:2.300

分類	分類番号	具体的対策事項	件數	投資額 (百万円)	CO ₂ 削減効果 (万t-CO ₂)	削減効果 (ki)
	1	圧力、温度、流量、遠流比等条件変更	45	1,511	3.0	13,215
	2	運転台数削減	19	158	1.0	4,274
	3	生産計画の改善	10	16	0.3	1,123
運転方法の	4	長期連続運転、寿命延長	1	0	0.0	70
改善	5	時間短縮	19	143	0.2	881
	6	高度制御、制御強化、計算機高度化	20	633	1.3	5,646
	7	再利用、リサイクル、その他	6	106	0.4	1,598
小計			120	2,566	6.2	26,808
排出エネル ギーの回収	8	排出温冷熱利用・回収	26	3,373	3.1	13,457
	9	廃液、廃油、排ガス等の燃料化	8	149	2.5	10,658
	10	蓄熱、その他	9	110	0.2	978
小計			43	3,633	5.8	25,094
	11	プロセス合理化	16	484	2.7	11,746
プロセスの	12	製法転換	3	0	0.2	965
合理化	13	方式変更、触媒変更	6	226	0.2	759
	14	ピンチ解析適用、その他	0	0	0.0	0
小計			25	711	3.1	13,470
	15	機器性能改善	30	1,984	2.3	10,120
	16	機器、材質更新による効率改善	86	19,127	11.9	51,891
設備・機器効	17	コージェネレーション設置	6	1,289	2.5	10,838
率の改善	18	高効率設備の設置	60	6,256	4.0	17,364
	19	照明、モーター効率改善、その他	85	2,381	0.8	3,594
小 計		267	31,037	21.6	93,808	
その他	20	製品変更、その他	13	632	1.7	7,389
		小 計	13	632	1.7	7,389
		合 計	468	38,579	38.3	166,568

出所:日本化学工業協会(2020)

2. カーボンニュートラルと製造業 低・脱炭素社会に向けた業界動向(化学)

- > 化学産業における革新的技術
- ② すべての革新的技術の導入に成功すると1696.4万トンの排出削減が実現(原油⇒熱量⇒二酸化炭素排出量で換算し、計算)
- ✓ 現在の排出量が5784万トンなので、線形変化分(2970 万トン)と上記の1696万トンを差し引くと排出量は1118万 トンとなり、やはりカーボンニュートラルとは遠い

	革新的技術・サービス	導入時期	削減見込量	
1	二酸化炭素原料化基幹化学品製造プロセス技術開発	2030年		
2	有機ケイ素機能性化学品製造プロセス技術開発	2030年		
3	非可食性植物由来原料による高効率化学品製造プロセス 技術開発	2030年	633万kl-原油	
4	機能性化学品の連続精密生産プロセス技術の開発	2030年		

出所:日本化 学工業協会 (2020)

3. エネルギー産業とカーボンニュートラル エネルギー産業に関する結論

3. カーボンニュートラルとエネルギー産業


- エネルギー産業に関する結論
- ▶ カーボンニュートラルの実現は製造業より見通しが立つ
- ▶ 【理由】基本的構造は変わらず.
 - ✓ 1次エネルギー, 調達先ベースで考える
 - √ 現在のエネルギーの構造⇒①基本的に輸入エネルギーが主体,②コンビナート等の受け入れ拠点において,輸入したエネルギーを加工し(発電,都市ガス製造等),流通網に乗せる
 - ✓ エネルギーの種類が化石から海外の再エネを主体としたものに変わる、加工・流通させるものが新しくなるという形に過ぎない。
- エネルギーの議論では、規模感と時間軸を取り入れて考える必要性がある。

3. エネルギー産業とカーボンニュートラル

現在の1次エネルギー概略

現在の1次エネルギー概略(概略, 2018年度)

【国産エネルギー】

水力・再可未活エネ 水力(673PJ) 再エネ(1116PJ) 末活エネ(589PJ) ・天 (計2358PJ) (9

・天然ガス (96PJ)

原料炭を除く日本の1 次エネルギーの消費 量は約18,000PJ 輸入エネルギーが約8 割5分を占める

出所:資源エネルギー庁(2021) より筆者作成

3. エネルギー産業とカーボンニュートラル 将来のエネルギーの姿(イメージ)

■ 将来のエネルギーの姿(イメージ) *イメーシのため, 円の大きさ に関して, 厳密さはありません

【輸入エネルギー】 - 石油, 天然ガス, 石炭 ※ CO2分離回収 ⇒ CCS & CCU

【輸入エネルギー】

【輸入エネルギー】

【輸入エネルギー】
・再エネ(水素)
※アンモニア, MCH,
メタネーション等にて

【国産エネルギー】

再エネ 地熱 太陽光・風力 水力

再エネの導入可能発 電量は3,820PJ程度

将来も輸入エネルギー が太宗を占めることは 変わりない

・全電化が解決策とは限らない・メタンで持ち込み、そのまま使用しても良い、e-fuelの形でも構わない

3. エネルギー産業とカーボンニュートラル エネルギー転換に向けての課題

- エネルギー企業の役割
- ▶ エネルギー転換に向けての課題

調達

輸送

受八 加土

流通· 消費

安価な資源調達 場合によっては, 水素の自主資源 開発も

安価で安定的 な輸送形態の 確立 利用可能な形への改変(安価かつインフラコストの低い形)

安価で安定的かつ, 購入インフラ面で の不安がないこと が望ましい

- ・①経済性の獲得が1番の課題
- ・経済性獲得のためには数量の 拡大が急務

経済性とともにインフラ面での課題

(②スイッチングコ ストの問題)が存在 消費者側の問題が加わる

- 過去のエネルギー転換の事例 出所:松島編(2019)
- > 鯨油から石油への転換
- ▶ 19世紀半ばまで光源として鯨油・鯨蝋を使用していた

生息数の減少

人材不足と技術の低下

経済活動の活発化による 鯨油需要の増大 鯨油価格の高騰

新たな光源として石油の活用

> 鯨の生息数の減少と日本の開国

- √ 1760年頃になると大西洋において鯨の生息数が減少
- √ より遠洋(インド洋, 太平洋等)にて捕鯨活動をする必要が生じる。
- √ 鯨油の精製装置を搭載した船は4年以上の航海をすることも
- ✓ 1853年、ペリー率いる黒船が来航し、捕鯨基地として日本に開 国を要求。

人材不足と技術の低下

- 熟練捕鯨者の人材不足(人材育成が重視されず). 1848年からのゴールドラッシュで賃金の低い捕鯨従事者が金採掘へ転向
- ✓ 捕鯨技術の低下

▶ 価格の高騰により新しい光源が求められる

- 世界初の機械掘りによる石油の採掘
 - ✓ 1859年エドウィン・ドレーク大佐がペンシルバニア州タイタスビルにて回転式掘削機を用いて原油生産に成功(ドレーク井)
 - ✓ ドレーク大佐は実際には元鉄道員. 箔を付けさせ物事をスムーズに進行させるために「ドレーク大佐」宛の郵便物を現地に多数送り, 大佐と思わせる.
- ▶ 短期間でのエネルギー転換
 - ✓ 鯨油から石油への以降は20年程度の短期間でスムーズに進む
 - ✓【経済性】石油は当初高価であったが、原油精製技術の進展と 市場の形成によって急速に価格が低下
 - ✓【低廉なスイッチングコスト】(需要者)インフラの変更が容易であったのも大きい(同じランプが使用可).(生産者)石炭油を抽出する簡易な蒸留釜が石油精製用に転用される

- > 新需要による爆発的な拡大
 - ✓【石油需要の拡大】
 - ✓ 20世紀に入り自動車, 航空機, 船舶等の輸送用燃料として需要 が拡大.
 - ✓ 1883年にダイムラーがガソリンエンジンを発明, 1891年にディーゼルがディーゼルエンジンを発明
 - ✓ 1908年ヘンリー・フォードがT型フォードを発売. 自動車が量産化、 大衆化され、米国において急拡大
 - ✓ 1910年にチャーチルは軍艦の燃料を石炭から石油に転換することを決定。
- まとめ:エネルギー転換においては,経済性とともにスイッチングコストが低廉であったことが促進要因となった. 円滑な転換には連続性が欠かせない

- 経済性獲得の問題
- 輸入価格を低減させる必要性がある
- ▶ 石炭から石油へのエネルギー転換に おいて、日本は既にこうした解決策 の遂行を経験済み。
- 世界に先駆けてタンカーの大型化を 実現⇒原油輸入価格の顕著な低下
 - ✓ 他にも、①大型タンカーの着桟を可能と するための港湾整備、②用船期間の長 期化や自社船の拡充なども進められる.
 - ✓ 低廉な石油利用が可能となり、日本の石油依存度は高める(石油危機発生時、日本78%⇔フランス67%、英国50%、西ドイツ47%、米国47%)

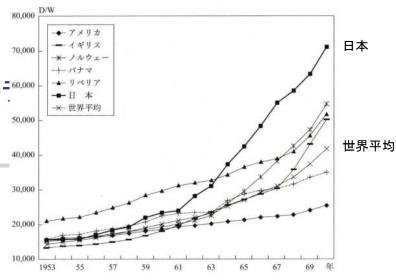


図 6-2 主要国におけるタンカーの平均船型の推移

- 資料) Sun Oil Company, Analysis of World Tank Ship Fleet, Philadelphia: Sun Oil Company (海事図書館所蔵).
- 註1) 各年12月31日現在の数値。
- 2) 2,000 総トン以上の外航タンカーを集計したもの。

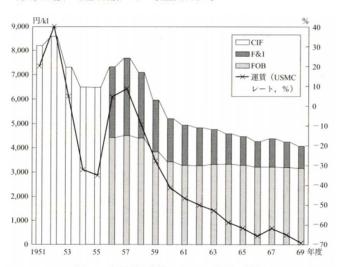


図 6-1 原油輸入価格とタンカー運賃の推移

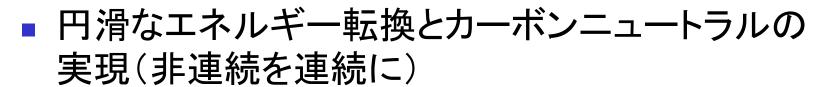
- 資料) 通産省鉱山局石油計画課・石油業務課編『石油産業の現状』1966 年版, 石油通信社, 237 頁, 同 1970 年版, 282 頁, 産業合理化審議会エネルギー部会第四分科会『わが 国における将来のエネルギー価格(業)』1959 年 7 月 10 日, 99 頁 (一橋大学社会科学経計情報センダー所書)。
- 註1) 1951~55 年は年次。
- 2) 1962年10月以降はソ連原油を含まず。
- 3) USMC については、第5章註68) 参照。

3. エネルギー産業とカーボンニュートラル **経済性獲得の問題**

- 【LNGの事例】日本が世界に先駆けて導入. 国内産のガスでは不足⇒海外の天然ガスをLNG化し、発電と都市ガスとして利用する.
- ▶ 1969年11月,日本は初の液化天然ガス(LNG)の輸入を成功させた。1969年時点では、LNGは未知のエネルギー源であり、価格競争力もなかった。しかし、現在では環境に優しい安定エネルギー供給源に(今井・橘川、2019)
- 日本には「海外からエネルギーを輸入(輸送)し、利用する、そのためのコスト低減努力」については一日の長がある⇒再生可能エネルギーの輸入に関しても、方向性が定まれば、順調にコスト削減が実現する可能性がある。

3. エネルギー産業とカーボンニュートラル スイッチングコストの問題

- スイッチングコストの問題
- 【スイッチングコストとは】別の製品に乗り換える際に顧客 が負担する一過性のコスト.
- ▶ 単に経済性が存在するだけでなく、既存の使用方法・器 具との連続性があるほど、移行に成功しやすい
- ▶ ①水素発電(既存の電力網を活用), ②液体燃料の形で水素を持ち込むe-fuel(既存の石油流通網, 内燃機関を活用), ③ガスの形で持ち込むメタネーション(既存のガス配管, ガス器具を活用)などは移行しやすい形態
- ▶ 輸入エネルギーが将来的に中心となることを想定すると、 持ち込んだ形で使用する②、③も積極的に進めるべき


3. エネルギー産業とカーボンニュートラル スイッチングコストの問題

- 見落とされがちな論点:需要家の目線
- ✓ 経済性以外を評価する需要家の存在
- ✓ 転換期前に新しいエネルギーは既に発見され、経済性に 乏しくとも一部業界では広範に使用されていた
- ✓ 【事例】潜在的に進行していたエネルギー革命
 - ✓ 1950年代以降に出現したエネルギー革命は、すでに戦前から特 定領域(鉄鋼業・金属業)においてはかなり進行していた.
 - ✓ 一部の需要家に利便性が評価され、特定の分野で先行して石油 へ転換が進む「段階的なエネルギー革命」であった(小堀2011).
- 数量拡大に向けて、①高い価格でも受容する顧客を開 拓、②水素販売以外で収益を得るビジネスモデル(サブ スクリプションなど)の構築等の手立ても考えられる

3. エネルギー産業とカーボンニュートラル

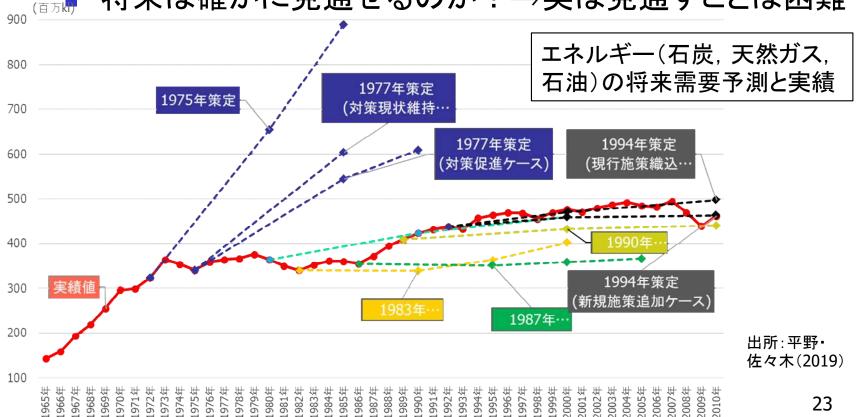
円滑なエネルギー転換と

- ▶ 非連続的な変化をいかに連続的に行っていくのかという 点が重要. 以下の①~③が実行される必要性がある
- 対処策①:経済性がなくともエネルギー転換を望む顧客を発見し、先行的に需要を拡大する。高コストであっても使用量拡大を優先させ、コスト低減を図る
- 対処策②: 既存のインフラ等を使用し、スイッチングコスト を低下させて普及拡大(例: メタネーション)
- 対処策③:最終的にインフラ等への投資を鑑みても余りあるほどの経済性を実現する(経済性は後でついてくる)

3. エネルギー産業とカーボンニュートラル

円滑なエネルギー転換と

カーボンニュートラルの実現



- ✓ 特定のエネルギーの使用を完全に止めることはない
- ✓ 我々はすべてのエネルギーを使用し続けている(1次 エネに占めるシェアは変動しようとも)
- ✓ 現時点で石油・ガス産業など既存エネルギーの維持 の重要性は変わらず
- ▶ エネルギー転換での地域間連携の重要性
 - ✓ 需要量の拡大(場合によっては東アジアで連携も)
 - 需要家の掘り起こし、水素の使い方に関するノウハウを共有可地域によってユーザーが異なることで多様な使い方を発見できる.

4. おわりに:不確定・不明瞭な将来に向けて

当たらない需要予測

4. おわりに: 不確定・不明瞭な将来に向けて

				石炭	ガス	石油	計
	2000年 実 予 2010年		予測	82.5	42.2	308.0	432.7
1990年			実需	108.4	79.0	288.3	475.7
策定予測			予測	82.5	51.9	306.0	440.4
			実需	129.1	103.2	229.0	461.3
	現行施策折込 ケース 2010	2000年	予測	77.9	84.6	316.0	478.5
1994年			実需	108.4	79.0	288.3	475.7
		2010年	予測	81.4	84.6	331.0	497
			実需	129.1	103.2	229.0	461.3
策定予測		2000年	予測	75.5	74.7	308.0	458.2
			実需	108.4	79.0	288.3	475.7
		2010年	予測	77.9	81.8	303.0	462.7
		2010年	実需	129.1	103.2	229.0	461.3

出所:平野· 佐々木(2019)

- ▶ エネルギー別の予測(90,94年)と実需
- ✓ 総量の予測と実需が近似していても(90,94年策定),エネルギー種別ごとの予測は実需と乖離
 - ✓ 石炭・ガスが想定より多く、石油は小さい⇒総量は近似しても構成比は予測できていない
- 環境の変化が穏やかな時期であっても、細目まで考慮すると10年、20年後の需要(社会)を予見することはかなり 困難。
- ▶ まして不連続な変化は予見不可能

4. おわりに: 不確定・不明瞭な将来に向けて

将来を変える行為主体

- なぜ将来予測は当たらないのか?
- ① 予見不可能な外部環境の変化
 - √ 石油危機の発生. 今回のコロナもその一例.
 - 予見不可能な変化を読み切ることはできない.変化への耐性を身に着けていくしかない
- ② 自律性のある行為主体の存在(社会科学に法則性は存在とせず).
 - ✓ 世の中を変えようとする人々の行動によって将来像は大きく変化
 - √【注意点】悲観的な予測が悲観的な将来を生む可能性もある.
- 予測に従属しているのではなく、我々の行為によって将来の姿は変わる⇒望ましいあり方を描き、行動することが最重要.

4. おわりに: 不確定・不明瞭な将来に向けて

茨城県への期待

- 茨城県への期待
- カーボンニュートラルに向けて様々な可能性&リソースを 有する地域
- ① 調達⇒洋上風力などで自ら再エネを作ることもできる
- ② 輸入エネルギーの受け入れ⇒鹿島港,茨城港などの港湾の存在(隣県の小名浜港との連携もありうる)
- ③ エネルギーの加工⇒発電所,製油所,LNG基地,重電メーカーの存在
- ④ エネルギーの流通⇒LNGパイプラインの存在
- ⑤ 消費⇒エネルギー多消費産業の存在(コンビナート)
- ⑥ 革新的な技術の創造⇒つくば等に多数の研究機関

- 今井伸・橘川武郎(2019)『LNG 50年の軌跡とその未来』日経BPコンサルティング.
- エネルギー総合工学研究所編(2020)『図解でわかるカーボンリサイクル』技術評論 社.
- 小堀聡(2010)『日本のエネルギー革命』名古屋大学出版会.
- 資源エネルギー庁(2021)『エネルギー白書2021』.
- 日本化学工業協会(2020)「化学産業における地球温暖化対策の取組み」(2020年度 第1回 産業構造審議会 産業技術環境分科会 地球環境小委員会 化学・非鉄金属 ワーキンググループ 配布資料)
- 日本鉄鋼連盟(2021)「鉄鋼業の地球温暖化対策への取組」(2020年度第1回 産業 構造審議会 産業技術環境分科会 地球環境小委員会 鉄鋼ワーキンググループ 配 布資料)
- 平野創(2020)「石油危機」筒井清忠編『昭和史講義【戦後篇】(下)』筑摩書房.
- 平野創・佐々木幸平(2019)「エネルギー需要予測の史的分析」(エネルギー・資源学会第38回研究発表会要旨集)。
- 松島潤編(2019)『エネルギー資源の世界史』一色出版.