実験報告書様式(一般利用課題·成果公開利用)

MIE Experimental Depart	提出日 Date of Report
WILF Experimental Report	2010.2.12
課題番号 Project No.	装置責任者 Name of responsible person
2008G0019	石垣徹
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
産業用途酸化物粉末の中性子粉末回折	BL20
実験責任者名 Name of principal investigator	実施日 Date of Experiment
岡野 哲之	2009.10.13
所属 Affiliation	
パナソニック株式会社 マテリアルサイエンス解析センター	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと)

Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.					
測定試料に	ついて、以下に	記載する。			
試料名:Li[Ni	_{0.75} Co _{0.15} Al _{0.1}]O	2.(空間群:R-3m	n(A-166)).		
		表1 詞	試料の基本結晶構	造	
Atom	g	Х	У	Z	
Li1	1	0	0	1/2	
Ni1	0.75	0	0	0	
Co1	0.15	1	\uparrow	↑	
Al1	0.1	1	\uparrow	↑	
01	1	0	0	∼0.26	

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

【目 的】iMATERIA の実力を把握する。

中性子はX線と異なり、H, Li, O等軽元素に対する感度が高い。また、これまでの中性子装置に比べ、1)高 強度の中性子束を得る事ができるため信号強度が増加する、2)High-Q 領域(d<1Å)に到るまでの回折線が 解析に使用可能である事から、短時間の測定、及び高精度な解析が可能になる事が期待される。

【実験方法】 前記試料を測定し、リートベルト解析を行い比較した。
 【測定条件】

 [X線回折] SPring-8 BL19B2
 重量:約 5mg 測定時間:約 5 分.
 試料ホルダ:ガラスキャピラリー使用
 [中性子回折] J-PARC BL20 iMATERIA(運転出力:20kW)
 重量:3.8605g 試料密度 2.13g/cm³.
 試料ホルダ:バナジウム缶(6mm 径×64mm 高さ)使用
 測定時間:2009/10/13 16:08-19:05, 2 時間 57 分.

2. 実験方法及び結果(つづき) Experimental method and results (continued)

【結 果】

X線回折、及び中性子回折のリートベルト解析結果を表 2,3、及び回折図形を図 1,2 に示す。

X線回折リートベルト解析にはRIETAN-2000^[1]を、中性子回折(J-PARC)リートベルト解析にはiMATERIA用 に新規に開発中のZ-rietveldを用いた。表 1 に示す基本構造で解析した場合と、カチオンミキシングモデル(リ チウムサイトと遷移金属サイトの原子置換があるモデル)を用いた場合、後者の方が信頼性を示すパラメータ が小さい値を取ったため、以下の解析結果はカチオンミキシングモデルを使用している。

リチウム/酸素原子の温度因子(B)の精度が一桁向上している。また、酸素座標(z)の精度も向上しており、軽元素に対する精度が向上していると考えられる。

従来の中性子回折(JRR-3)に比較して、約1/5の時間で同レベル強度の信号を得ることができた。

1)"A Rietveld-analysis program RIETAN-98 and its applications to zeolites": F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198-203.

1)高輝度 X 線回折の結果

使用波長:0.775Å、データ数=7802

S=1.247%, R_{wp} =4.11%, R_p =2.58%, R_e =3.3%, R_B =5.57%, R_F =3.3%

a=2.86187(2) Å, c=14.18388 (11) Å

表 2 高輝度X網	泉回折リートベル	ルト解析結果
Х	v	Z

Atom	g	Х	У	Z	В
Li1	0.95712	0	0	1/2	3.401(83)
Ni2	0.04287	1	1	1	↑
Li2	0.04287(15)	0	0	0	0.195(8)
Ni1	0.70712	1	1	1	1
Co1	0.15	1	1	1	↑
Al1	0.1	1	1	1	↑
0	1	0	0	0.26044(6)	1.296(24)

2)中性子回折(J-PARC BL20)の結果

データ数 N=7716

S=2.94%, R_{wp} =4.65%, R_{p} =3.55%, R_{e} =1.58%, R_{B} =3.43%, R_{F} =2.91%

a=2.86235(0) Å, c=14.18844(0) Å

表3 中性子回折リートベルト解析結果

Li1 0.95712 0 0 $1/2$ $0.379(9)$ Ni2 0.04287 \uparrow \uparrow \uparrow \uparrow Li2 $0.04287(15)$ 0 0 0 $0.246(1)$ Ni1 0.70712 \uparrow \uparrow \uparrow \uparrow Co1 0.15 \uparrow \uparrow \uparrow \uparrow All 0.1 \uparrow \uparrow \uparrow \uparrow O1 0 0 $0.25940(1)$ $0.773(2)$	Atom	g	Х	у	Z	В
Ni2 0.04287 \uparrow \uparrow \uparrow \uparrow Li2 $0.04287(15)$ 0 0 0 $0.246(1)$ Ni1 0.70712 \uparrow \uparrow \uparrow \uparrow Co1 0.15 \uparrow \uparrow \uparrow \uparrow Al1 0.1 \uparrow \uparrow \uparrow \uparrow O1 0 0 $0.25940(1)$ $0.773(2)$	Li1	0.95712	0	0	1/2	0.379(9)
Li2 $0.04287(15)$ 0 0 0 $0.246(1)$ Ni1 0.70712 \uparrow \uparrow \uparrow \uparrow Co1 0.15 \uparrow \uparrow \uparrow \uparrow Al1 0.1 \uparrow \uparrow \uparrow \uparrow O1 0 0 $0.25940(1)$ $0.773(2)$	Ni2	0.04287	1	\uparrow	↑	↑
Ni1 0.70712 \uparrow \uparrow \uparrow \uparrow Co1 0.15 \uparrow \uparrow \uparrow \uparrow \uparrow Al1 0.1 \uparrow \uparrow \uparrow \uparrow \uparrow O100 $0.25940(1)$ $0.773(2)$	Li2	0.04287(15)	0	0	0	0.246(1)
Co1 0.15 \uparrow \uparrow \uparrow \uparrow Al1 0.1 \uparrow \uparrow \uparrow \uparrow O100 $0.25940(1)$ $0.773(2)$	Ni1	0.70712	1	\uparrow	↑	↑
All 0.1 ↑ ↑ ↑ O 1 0 0 0.25940(1) 0.773(2)	Co1	0.15	1	\uparrow	↑	↑
O 1 0 0 0.25940(1) 0.773(2)	Al1	0.1	1	\uparrow	↑	1
	0	1	0	0	0.25940(1)	0.773(2)

2. 実験方法及び結果(つづき) Experimental method and results (continued)

【結果】

図中の赤い点は実測データ、実線は計算から求められた回折強度、緑色の線は回折線が現れる角度もし くは飛行時間、一番下の青い線は実測値と計算値の差を示す。

