実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2014年2月10日
課題番号 Project No.	装置責任者 Name of responsible person
2012PM0012	石垣徹
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
中性子散漫散乱による熱振動の相関効果	iMATERIA (BL-20)
実験責任者名 Name of principal investigator	実施日 Date of Experiment
佐久間 隆	2012 年 3 月 16 日 12:00~2012 年 3 月
所属 Affiliation	18日19:30
茨城大学	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと)

Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
1) 臭化銅 CuBr 粉末	
2) ゲルマニウム Ge 粉末	

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

TOF型中性子散乱装置 iMATERIA を利用し、臭化銅およびゲルマニウムの散漫散乱強度の温度変化を、 300 Kおよび 8 Kにおいて測定した。両試料とも 10 ¢ の低温用試料フォルダーに詰め冷凍機内に固定した。 温度以外は同一となる実験条件にして、1 試料あたり約 9 時間の測定を行った。

1) CuBr の実験より得られた、300 Kおよび8 Kにおける散漫散乱(バックグラウンド)部分の散乱強度を 図1に示す。図1から、散漫散乱強度は大きな温度依存性を示し、a)散漫散乱強度は、300 Kにおいてたとえ ば *d* ~1.2 Åなどにピークをもつ振動となる、b)8 Kでは振動的な強度変化の度合いが弱くなる、c)8 Kおよ び 300 Kの散漫散乱強度は*d* が小さい場合にほぼ一致する、ことがわかる。

これらの実験的な特徴は、これまでX線回折や原子炉を利用した中性子回折実験から導出された、次ページに示す、熱振動の相関効果を含む回折強度式で説明できる。すなわち、散漫散乱の主たる要因が原子熱振動であること、散漫散乱の振動的な振る舞いは熱振動パラメータの大きさおよび原子熱振動の相関効果により生じていること、熱振動因子 exp(-M が dの小さい場合には熱振動によらず同一の値になる。

 $\mathbf{2}$

2) 1)で実験を試みた CuBr は、室温で熱振動パラメータが B~4 Å²と非常に大きな値を示す。これに対 し、Ge は室温で B~0.5 Å² 程度であり、原子熱振動から散漫散乱への寄与は小さくなることが予想される。 実験の結果、Ge についても 1)と同様に、強度の温度変化量は比較的小さいが、300 Kおよび8 Kにおける 散漫散乱強度変化が観測された(図 3)。特徴として、a)散漫散乱強度は、300 Kにおいて振動する強度変化 が現れる、b)8 Kおよび 300 Kの散漫散乱強度は*d* が小さい場合にほぼ一致する。これらの特徴は、1)と同 様に熱振動の相関効果を含む回折強度式で説明できる。

図 3 Ge の中性子散乱強度 (300 K:黒、8 K:青)

今回のTOF実験で明らかになった点は、原子炉を利用した中性子線散乱実験からは得られない散乱ベクト ルQの大きな(dの小さな)領域で初めて測定を行い、散漫散乱の振動的なピーク位置が従来の熱振動の 相関効果を含む回折強度式による予想と一致すること、また温度によらず散乱ベクトルQの大きな(dの小 さな)値で散漫散乱強度はほぼ一致することなどを確認した。