Ⅵ 研究報告

1	霞ケ浦における貧酸素水塊の現地観測 小松伸行・北村立実・石井裕一・北澤大輔 (東京大学)	83
2	湖沼からの Polynucleobacter 属細菌の分離と溶存態有機物の関係	93
3	霞ヶ浦における植物プランクトン生産物の有機炭素プールへの寄与 佐藤雄飛 (筑波大学)・渡邊圭司・濱健夫 (筑波大学)	97
4	夏季の北浦における湖上風の観測と湖流に及ぼす影響	104
5	霞ヶ浦(西浦・北浦)におけるユスリカ幼虫の水平分布と その季節変動に影響をおよぼす環境勾配 長谷川恒行(茨城大学),中里亮治(茨城大学),肥後麻貴子(元茨城大学),石井裕一	111
6	集水域の土地利用状況による霞ヶ浦流入河川の分類とその特徴 石井裕一,北村立実,渡邊圭司,小松伸行	118
7	霞ケ浦における藍藻綱ユレモ目のフロラ	124
8	霞ケ浦流域モデルの構築と河川流域への適用 北村立実	129

霞ケ浦における貧酸素水塊の現地観測

小松伸行,北村立実,石井裕一,北澤大輔^{**} Observation of the Oxygen-deficient Water Mass in Kasumigaura Nobuyuki KOMATSU, Tatsumi KITAMURA, Yuichi ISHII and Daisuke KITAZAWA キーワード:貧酸素水塊,成層,鉛直混合,酸素消費

1 はじめに

一般に湖沼底層の貧酸素化は、成層が鉛直方 向の移流・拡散を抑制し, 呼吸や有機物分解な どに伴う湖底付近での酸素消費が酸素供給を上 回ることによって起きるとされている^{1)~3)}。霞 ケ浦においては 1973 年以降頻繁に底層水が貧酸 素化したと報告されており、漁業や養殖業に被 害を与えた^{4) 5)}。また、成層下の停滞した湖水中 では分解された栄養塩等の濃度が上昇するが⁶⁾. 貧酸素化の進行に伴い底泥が還元的になると栄 養塩の溶出が促進され⁷⁾⁸⁾,それらの濃度はさら に上昇する。水温が密度成層の形成要因であり, 水深も浅い霞ケ浦では通常1日~数日で成層構 造が崩壊するため⁹⁾,底層水中の過剰な栄養塩は 成層の崩壊とともに頻繁に生産層に供給される。 このため、貧酸素水塊の動態を理解し予測する ことは、霞ケ浦の生態系保全や水質管理を行う

上で極めて重要である。

霞ヶ浦における貧酸素水塊の予測手法に関し て,統計解析モデル¹⁰⁾ や水質モデル¹¹⁾ などの報 告があるが,複雑な貧酸素水塊の時空間分布を十 分に再現できるモデルは未だ構築されていない。 一方,東京湾や伊勢湾などの内湾や宍道湖などの 汽水湖では数多くの数値モデルが実用化されてお り^{12)~14)},様々な施策評価や温暖化の影響評価な どが試みられている。今後,霞ケ浦においても詳 細な現地観測の実施とあわせて,数値モデルを用 いた貧酸素水塊の研究が進められる必要がある。

そこで本研究では、貧酸素水塊の動態を再現す るモデル構築の基礎とするため、2005~2007 年の現地観測で得られたデータを用いて、溶存酸 素濃度の変動に影響を及ぼす要因について検討を 行った。

Fig. 1 Location of sampling sites

2 方法

2-1 モニタリング調査

調査は「霞ケ浦の水質等モニタリング調査」に より、2005年6月~2008年3月まで概ね月1 回の頻度で36回実施された。本研究では西浦 12地点(M1~M12)および北浦5地点(M13 ~M17)の計17地点の観測結果を用いた。

水温および溶存酸素(DO)濃度は溶存酸素計 (飯島電子工業, ID-100)を用い,水面下50cm から湖底上50cmまで50cm間隔で測定した。 なお,溶存酸素計は毎回観測前に2点校正を行っ た。

底泥はアクリルカラム (ϕ 40mm)を用いてダ イバーにより採取した。採取した柱状サンプル は攪乱しないようにケースに収容して実験室に 持ち帰り,直上水をサイホンで静かに抜き取っ てから底泥の0~10cmを切り出した。切り出 した底泥を 2mm 目のふるいに通し,遠心分離機 (3000rpm, 15分)により間隙水を除去して湿 試料を得た。得られた湿試料について,化学的酸 素要求量 (COD)の測定を行った。

2-2 空間分布調査

調査地点はモニタリング調査地点のうち M4 お よび M11 を除いた 15 地点を含む西浦 40 地点, 北浦 34 地点の計 74 地点とした(Fig. 1)。調査 は2007年6月21日,7月7日,7月26日,8 月7日および8月17日の5回実施し、2隻の調 査船を用いて午前中に全地点の調査を終了させ た。水温および DO 濃度は溶存酸素計(飯島電 子工業, ID-100) を用い, 水面直下から湖底上 50cm まで 50cm 間隔で測定した。また、西浦 と北浦の各5地点の水面直下および湖底上50cm において毎回,ウインクラー法による DO 濃度 測定を行い,溶存酸素計による観測値と比較した。 その結果、溶存酸素計とウインクラー法による観 測結果のズレは概ね5%以内であったので、本研 究では溶存酸素計による観測値を補正せずに解析 に用いた。

2-3 連続観測

調査地点は空間分布調査地点のうち西浦1地 点(WQC-N1) および北浦4地点(WQC-K1 ~ K4)の5地点とした(Fig. 1)。調査期間は2005年8月1日~10月12日,2006年6月20日~10月5日および2007年6月8日~9月21日であり,湖内に設置した多項目水質計(東亜DKK,WQC-24)を用いて水面下50cmと湖底上50cmの水温・DO濃度・pHを15分間隔で連続測定した(Fig. 2)。多項目水質計は週1回を目安に現地で電極等の洗浄を実施したほか,2~3週間に1回を目安に実験室に持ち帰って隔膜の交換および校正等のメンテナンスを行った。

また、2006 年 7 月 30 日~9 月 16 日および 2007 年 6 月 8 日~9 月 21 日には北浦 1 地点 (WQC-K3) において、水面直下から湖底上 50cm まで 50cm 間 隔 に 自 記 式 水 温 計 (HOBO, WaterTempProV2) を 配 置 し た サー ミ ス タ チェーンを用いて、10 分間隔の水温鉛直分布デー タを取得した。

さらに、2006年6月7日~7月10日および 2006年7月25日~9月11日には北浦4地点 (WQC-K1~K4) で超音波ドップラー流速計 (ADCP; Nortek, Aquadopp Profiler Type-NB 2MHz) による流況観測¹⁵⁾を実施した。

3 結果と考察

3-1 モニタリング調査

貧酸素を表す DO 濃度は定義されておらず, 研究対象により様々な値が用いられるが,水産生

Fig. 2 Schematic drawing of moored instrument

									L. Nishiura							
		M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12			
Water Depth	Mean	2.9	3.9	6.3	3.4	3.2	3.7	5.5	6.2	5.9	5.6	1.3	1.8			
(m)	(Min Max.)	(2.6-3.9)	(3.2-5.8)	(2.6-6.8)	(2.4-4.5)	(2.2-6.4)	(3.3-4.0)	(4.9-6.8)	(6.9-5.8)	(5.7-6.3)	(5.3-6.0)	(1.0-1.6)	(1.6-2.2)			
Water Temp.	Mean	17.3	17.2	16.8	17.5	17.0	16.9	16.7	16.6	16.7	16.9	16.7	16.9			
(°C)	(Min Max.)	(4.6-30.1)	(4.7-30.6)	(4.0-29.9)	(5.3-30.1)	(4.5-29.7)	(4.3-29.7)	(4.0-29.5)	(3.7-29.1)	(3.7-28.9)	(3.7-28.9)	(4.3-29.5)	(4.6-29.0)			
COD of Sediment	Mean	55	59	63	19	39	41	48	61	71	69	1	3			
$(mg g^{-1} \cdot dw)$	(Min Max.)	(35-83)	(49-79)	(39-84)	(1-52)	(26-54)	(27-59)	(33-65)	(41-80)	(51-96)	(38-96)	(0-5)	(1-5)			
DO Concentration	Mean	9.8	9.2	8.7	8.9	9.4	9.4	8.9	8.8	8.9	8.8	10.3	10.1			
$(mg l^{-1})$	(Min Max.)	(4.3-15.7)	(3.6-16.1)	(1.3-17.0)	(3.9-12.7)	(4.7-14.0)	(3.2-14.4)	(0.3-15.2)	(1.0-15.1)	(4.3-14.9)	(4.3-13.5)	(5.3-15.0)	(5.8-14.8)			
Frequency of Oxy (≦3.0m	/gen-deficient g l ⁻¹)	0	0	3	0	0	0	1	1	0	0	0	0			
Range of Obser	vation Time	11:20 -	11:10 -	10:40 -	10:10 -	9:50 -	9:40 -	9:10 -	8:50 -	8:20 -	7:40 -	7:50 -	7:40 -			
Runge of Obser	vation Thile	14:10	13:50	13:00	12:20	11:50	11:20	10:40	10:10	9:20	8:30	9:00	9:10			
				L. Kitaura												
		M13	M14	M15	M16	M17										
Water Depth	Mean	1.7	7.2	6.4	4.6	2.3										
(m)	(Min Max.)	(1.3-2.3)	(6.8-7.6)	(6.0-6.8)	(4.1-4.9)	(1.9-2.6)										
Water Temp.	Mean	17.2	16.8	16.6	16.8	17.0										
(°C)	(Min Max.)	(5.6-30.2)	(4.3-29.3)	(4.3-28.9)	(4.6-28.7)	(4.8-29.8)										
COD of Sediment	Mean	77	98	91	73	8										
$(mg g^{-1} \cdot dw)$	(Min Max.)	(49-127)	(70-119)	(56-121)	(42-94)	(5-12)										
DO Concentration	Mean	10.0	7.9	8.3	8.9	9.7										
(mg l ⁻¹)	(Min Max.)	(5.9-16.2)	(0.0-15.9)	(0.1-16.0)	(3.6-15.2)	(14.5-5.3)										
Frequency of Oxy (≦3.0m	/gen-deficient g l ⁻¹)	0	6	2	0	0										
Range of Obser	vation Time	11:30 -	11:00 -	10:30 -	9:50 -	9:30 -										
		14:00	13:30	12:50	12:30	12:00										

Table 1 Main observational data collected by monitoring survey (June 2005 – March 2008) Water temperature and DO concentration were measured at the bottom layer (B-50cm).

物に関しては DO 濃度が 4.3mg L^1 以下になると 底生性の魚類や甲殻類が逃避行動を開始し, 3mg L^1 以下になると酸素耐性の弱い生物の死亡が始 まると報告されている¹⁶⁾。本研究では, 佐々木 ¹⁷⁾ が水槽実験によりコイの行動に影響が出はじ めると推定した 3mg L^1 以下を貧酸素として定義 した。

Table 1 にはモニタリング調査で得られた主 要な観測結果を示した。36 回の調査において湖 底上 50cm で貧酸素が観測されたのは,西浦で は M3 で 3 回, M7 および M8 で 1 回,北浦では M14 で 6 回, M15 で 2 回であり,北浦の方が多 かった。

Fig. 3 に湖底上 50cm における水温とDO 濃 度との関係を示した。佐々木¹⁸⁾は 1985 ~ 1994 年の観測結果から霞ケ浦で貧酸素が観測されるの は水温が 22°C前後を超える高水温期であると報 告している。この傾向は本調査においても同様で あるが、30°C付近の高い水温では 3mg L⁻¹ 以下 の DO 濃度は観測されなかった。

水深および底泥中 COD と湖底上 50cm におけ る最小 DO 濃度との関係を Fig. 4 および Fig. 5 に示した。水深の深い地点ほど DO 濃度が低下 することが示され,水深 2m 以浅では 5mg L¹ 以 下に低下することはなく,貧酸素が観測されたの は水深 5m 以上の地点であった。また,水深が深 い地点では底泥中 COD も多い傾向があるため, 全体としては底泥中 COD が多いほど最小 DO 濃 度が低い傾向が認められるが,その関係は水温や 水深ほど明確なものではなかった。貧酸素が頻繁 に観測された M14 は最も水深が深く有機物量も 多い地点であった。M9 および M10 は水深が比 較的深く,西浦の中では有機物量が多い地点であ るが貧酸素は観測されなかった。

鉛直的な密度構造の指標として水面下 50cm における湖底上 50cm との水温差 δ T を算出し, 西浦の水深 6m 前後の地点である M3, M8, M9 について,湖底上 50cm における DO 濃度との 関係を時系列グラフで示した (Fig. 6)。ここに は示さなかったが,水深 5m 以上の地点では M7 が M8 と, M10 が M9 と, M14 および M15 が M3 とほぼ同様のグラフであった。この結果から, 水面が温められ δ T が大きくなる時期に DO 濃 度の低下が観測される傾向が認められる。 δ T の

Fig. 3 Correlation between water temperature and DO concentration at the bottom

Fig. 4 Correlation between Depth and minimum DO concentration at the bottom

Fig. 5 Correlation between COD of sediment and minimum DO concentration at the bottom

最大値は4℃であったが, 霞ケ浦では0.5℃程度 のδTで日成層が形成されることが報告されてお り⁹⁾, 成層の影響が示唆される。しかしながら, 2005 年 6 月の M9・M10 や 2007 年夏期の各地

Fig. 6 Time series of δ T and DO concentration at the bottom

点ではδTが大きいにも関わらず貧酸素が観測さ れていない。δTは時間スケールで変動するため 観測時刻が影響することに加え, 霞ケ浦の温度成 層は日スケールで消長している⁹⁾。あわせてDO 濃度も時間~日スケールで変動していると推定さ れることから,モニタリング調査の頻度ではDO 濃度の変動を十分に捉えられていないと考えら れ,その要因や地点間の違いを検討するには異な る調査が必要である。

3-2 空間分布調査

Fig. 7 に 2007 年夏期に行なわれた 5 回の空間 分布調査の結果から,湖底上 50cm の DO 濃度 を示した。この調査では 8 月 17 日に広域的な貧 酸素水塊が観測され,モニタリング調査で貧酸素 が確認されなかった M9・M10 を含む西浦の湖 央部も底層は貧酸素水塊に覆われていた。この時 の ∂ T の分布を Fig.8 に示したが,西浦・北浦の 広範囲で 0.5℃以上の水温差が見られた。モニタ リング調査において貧酸素が度々確認された M3 を含む西浦北部の水域は,6~7月には湖央部と

Fig. 7 Spatial distribution of DO concentration at the bottom (a) 21/Jun./2007 (b) 07/Jul.2007 (c) 26/Jul./2007 (d) 07/Aug./2007 (e) 17/Aug./2007

比較して低い DO 濃度が観測されたが、8月17 日の観測では δ T が小さく貧酸素化していなかっ た。西浦西部の水域では6月に M8 付近が貧酸 素化しており、北岸側に広く5mg L⁻¹以下の低い DO 濃度が観測されたが、8月17日には M6 付 近まで 0.5℃以上の δ T が分布したにも関わらず 貧酸素は観測されなかった。これら5回の空間 分布調査の結果から,西浦の DO 濃度低下は常 に限られた水域で起こるものではないことが示さ れ,広い範囲が貧酸素水塊を形成する可能性を有 していると考えられた。

一方,北浦では水深が深い M14・M15 を含む 湖央部で湖底上 50cm の DO 濃度が常に低く,特 に西岸側で低くなる傾向があった。しかしながら,

Fig. 8 Spatial distribution of δ T (17/Aug./2007)

7月7日の観測時には 5mg L¹ 以下の低い DO 濃 度は東岸側に分布していた。霞ケ浦の網生簀養殖 漁場では短期的な DO 濃度の変動は風と密接な関 係があり、風上で低く、風下で高い DO 濃度が観 測されたと報告されている¹⁹⁾。空間分布調査が行 なわれた時間帯に国土交通省により観測された西 浦湖心観測所(M9付近)および北浦釜谷観測所 (M15 付近)における湖上風の時間分布を Fig. 9 に示した。7月7日には他の観測時と異なる5~ 8m s⁻¹の比較的強い北東風が継続して吹いていた ことがわかる。そこで、2次元多層モデル¹⁵⁾によ り北浦の吹送流の流向・流速を計算し、7月7日 と8月17日における午前10時の水面付近および 湖底付近の結果を示した(Fig. 10)。いずれも北 東風の影響で水面付近には南西向きの流れ、湖底 付近には北東向きの流れが形成されている。7月 7日には水面付近で 20 ~ 30cm s⁻¹,湖底付近で も5~12cm s⁻¹と流速が大きく,北東風により DO 濃度の水平分布が影響を受けたことが推察さ れる。これに対し、8月17日の流速は水面付近 でも 10cm s⁻¹ 以下と微弱であったことから, 顕 著な影響は現れなかったものと考えられる。なお. ここでは図示しなかったが、南西風が卓越した6 月21日,7月26日および8月7日には,水面付 近で北東向き、湖底付近で南西向きの流れが形成 された。北浦ほど明確ではないが、西浦にも DO 濃度の水平分布の傾斜が見られたことから、今後, 西浦における流動解析も実施したい。

station at Koshin and Kamaya

3-3 連続観測

連続観測結果の一例として、流況観測が行な われた 2006 年 6 月 22 日~6 月 26 日の期間に ついて、WQC-K2とWQC-K3における湖底上 50cmのDO 濃度および湖底上 70cmの湖流べ クトルの時間変化を Fig. 11 に示した。WQC-K2 とWQC-K3 は水深が約7m とほぼ同じであるが, WQC-K2 は比較的東岸側に近い観測地点である。 WQC-K2の湖底上 50cm の DO 濃度は、流向が 南向きに変化した23日未明や24日夜間に一時 的に貧酸素から回復したが、流向が北向きに転じ ると再び貧酸素となった。一方, WQC-K3の湖 底上 50cm の DO 濃度は、WQC-K2 とは反対に、 北向きの流れが観測されている間に一時的に貧酸 素から回復し、南向きの流れに転じると貧酸素と なっていた。このように、湖流とDO 濃度の実 測値の比較からも,北浦において吹送流として湖 内に形成される水平的な流動が DO 濃度の時空 間分布を短時間のうちに変化させることが明らか となった。

Fig.12には2007年に実施した観測結果から, 8月12~18日の気象条件(日射量・気温・風 向風速),WQC-K3における湖底上50cmとの

Fig. 10 Caluculated wind induced lake currents (a)07/Jul.2007 (b)17/Aug./2007

水温差の鉛直分布および水面下 50cm と湖底上 50cm の DO 濃度を示した。なお、気象条件は国 土交通省による釜谷観測所の観測結果を用いた。 水面下 50cm では日中に DO 濃度が上昇し夜間 に低下する日周期的な変動が見られ、日射量の変 動に対応することから、DO 濃度上昇は一次生産 者の光合成によるものと考えられる。一方、無光 層となる湖底上 50cm では上層からの移流・拡 散が DO 濃度上昇の主要因となる。15~16 日

Fig. 11 Continous observation results of DO concentration and current velocity (a) WQC-K2, (b) WQC-K3

に見られるように強い日射により湖内上層に蓄熱 される一方で風が微弱である期間には鉛直方向の 移流・拡散が抑制されていたと考えられ,湖底上 50cmのDO濃度は貧酸素となるまで低下した。 また,午後からの日射量低下と強い風の継続は鉛 直混合を進行させ湖底上50cmとの水温差を小 さくするが,6m s⁻¹の風が観測された12日午後 には湖底上50cmのDO濃度は上昇しておらず, 8m s⁻¹に達した13日および17日の午後には湖 底上50cmのDO濃度は急激に上昇し貧酸素は 解消された。成層が消失し鉛直的な水温分布がほ ぼ一様となった14日や18日には貧酸素にはな らなかった。これらの結果から,気象条件により 影響される湖内の成層状況が貧酸素水塊の消長と 密接に関係していることが示唆された。

Fig.12 (d) の図中に矢印で示す成層時の上層 の DO 濃度減少には,正午すぎから夕方までの急 な勾配と夜間の緩やかな勾配が見られた。前半の 急勾配の DO 濃度減少は,水面が蓄熱過程から冷 却過程に移行したことに伴って発生する上〜中層 での鉛直混合の影響が大きいと考えられる。夜間 のデータに対して引いた点線(1)~(3)は,傾き は(1)が -3.5mg L⁻¹ d⁻¹,(2)が -3.1mg L⁻¹ d⁻¹,(3) が -3.4mg L⁻¹ d⁻¹ であった。この結果は,十分な 酸素供給が起こらない条件下では 1~2日で容 易に貧酸素となることを示している。また,成層

Fig. 12 Continous observation results at WQC-K3 (a) solar radiation and air Temp. (b) wind speed and direction (c) vertical distribution of δ T (d)DO concentration

時の水面下 50cm と湖底上 50cm および成層消 失時との間で直線の傾きに差が見られないことか ら,貧酸素を引き起こすだけの酸素消費が湖水中 において行われている可能性が考えられる。底泥 の関与について影響評価や地点間の比較を行うた めには,現地観測とあわせて酸素消費に重要な底 泥表面の分析や室内実験等を実施する必要があ る。

Fig.13 には、同じ 2007 年 8 月 12 ~ 18 日の WQC-K2 と WQC-K3 における水面下 50cm お よび湖底上 50cm の水温変化を示した。南東~ 南西風であった 12 ~ 14 日の間、WQC-K2 では WQC-K3 で上下層の混合が生じた 13 日よりも 1 日早い 12 日に上下層の温度差が解消された。一 方、風向が北東となり気温が低下した 17 日には 両地点でほぼ同時に水温鉛直分布の一様化が見ら れた。この結果から、成層の形成と消失に対する 日射量、気温および風の作用が水域により異なっ

Fig. 13 Continous observation results of water temp. (a)WQC-K2, (b)WQC-K3

た現れ方をする可能性が示され、湖内の溶存酸素 分布にも影響していると考えられる。この要因と しては水域の容積など地形的な影響が考えられ る。この点については、今後、数値解析等を用い て検証したい。

4 まとめ

霞ケ浦における 2005 ~ 2007 年の現地観測で 得られたデータを用いて,溶存酸素濃度の変動に 影響を及ぼす要因について検討を行った。得られ た知見は以下のようにまとめられる。

- DO 濃度が 3mg L⁻¹ 以下となる貧酸素は水温 が 22°Cとなる高水温期に水深が深い地点で多 く観測された。
- 2) 貧酸素水塊の消長は、水面付近の蓄熱・冷却 に伴う水温鉛直分布と深い関係が認められ た。上下層の温度差が生じたことによる鉛直 混合の抑制は湖底付近を貧酸素化させると考 えられた。
- 3) 貧酸素水塊の時空間分布に与える風向風速の 影響は大きいことが明らかになった。風に起 因する湖内流動は DO 濃度の空間分布を短時 間で変化させた。また,風は水温鉛直分布に も影響を与えており,貧酸素水塊の消長に大 きく関与すると考えられた。
- 4) 2007 年 8 月の北浦における現地観測では
 -3.1 ~ -3.5mg L⁻¹ d⁻¹の速度で溶存酸素濃度
 が減少しており、酸素供給が無い場合には1

~2日で湖内が貧酸素化する速度であった。

これらの成果を踏まえて貧酸素水塊の動態を再 現するモデル構築に取り組むためには、湖内の水 温鉛直分布と日成層の変動を良く再現できるモデ ルが基本であり, 鉛直的な解像度を高める必要が あると考えられる。一方で、風の影響も極めて重 要なことから、風による混合効果と吹送流の形成 を再現できることも求められる。また、水温分布 や風の影響には水深や湖岸線などの地形が深く関 係する。風や地形の影響を考慮するには水平的な 解像度も高くする必要があるが、一般的なパーソ ナルコンピューターを用いたシステムでは計算時 間の制約から鉛直・水平の両方の解像度を高める ことは困難である。このため、貧酸素水塊の発生 日数や規模など広い空間における比較的長期間の 変動を予測する場合には鉛直的な解像度を優先 し、養殖漁場への貧酸素水塊侵入のような局所的 で短い時間スケールの変動を予測する場合には水 平的な解像度を優先するなど目的に応じた工夫が 必要であると考えられる。今後、さらに詳細な現 地観測の実施とともに、いくつかのモデルを試行 し、霞ケ浦における貧酸素水塊の時空間分布を十 分に再現するモデルの実用化を図っていきたい。

謝 辞

本調査の実施にあたり,きたうら広域漁業協同 組合,玉造漁業協同組合および霞ヶ浦漁業協同組 合連合会の関係者各位に大変お世話になった。こ こに記して感謝の意を表す。

なお,本研究は文部科学省から「特別電源所在 県科学技術振興事業補助金」の交付を受けて実施 した。

引用文献

- 高崎みつる,佐藤敦久,須藤隆一,岡田光 正(1983):湖の溶存酸素収支に関する研究, 土木学会論文報告集,340,97-105.
- 2) 熊谷道夫,前田広人,大西行雄(1986):鉛 直循環と無酸素層の形成-琵琶湖南湖浚渫窪 みの例-,陸水学雑誌,47,27-35.
- 三村信男,吉野哲平,信岡尚道,横木裕宗, 荒井将人 (2004):涸沼における DO の挙

動とその支配要因,海岸工学論文集,51,941-945.

- 4) 赤野誠之,佐々木道也,山崎耿二郎,浜田篤 信(1975):霞ヶ浦における網いけす養殖ゴ イのへい死について-I,茨城県内水面水産 試験場研究報告,12,25-48.
- 5) 外岡健夫,浜田篤信(1990):1988年に霞ヶ 浦北浦で発生した酸素欠乏について,茨城県 内水面水産試験場研究報告,26,48-59.
- 6) 小松伸行,石井裕一,北村立実,本間隆満, 渡邊圭司,根岸正美(2007):夏期の北浦に おける水質変動と湖水の流動について,第 41回水環境学会講演要旨集,p14.
- 7) 原田加奈子,岩崎健次,古里栄一,浅枝隆 (2006):貯水池底層部における鉄とリンの 挙動について,水環境学会誌,29,327-332
- 鈴木穣,阿部千雅(2006):底泥-水間の物 質移動に関する調査,土木研究所成果報告書 2005,381-422.
- 石川忠晴,田中昌宏,小関昌信(1988):日々の日射によって形成される弱い温度躍層と吹送流の相互干渉,第32回水理講演会論文集, 323-328.
- 10) 熊丸敦郎,渡辺直樹,外岡健夫(1997):最近,霞ヶ浦において発生する酸素欠乏の予測について,茨城県内水面水産試験場研究報告, 33,60-67.
- 中曽根英雄, 蕪木元成, 黒田久雄, 加藤亮 (2005): 霞ヶ浦における貧酸素水塊分布 に関する研究, 農業土木学会論文集, 239, 9-17.
- 12) 松梨史郎 (1993): 閉鎖性海域の窒素・リン・溶存酸素の予測モデル,海岸工学論文集,40,1076-1080.
- 13)田口浩一(1998):水質と生態系モデル,海洋と生物,118,366-374.
- 14) Ichikawa, T., M. Aizaki, and M. Takeshita (2007) : Numerical study on amelioration of water quality in Lakes Shinji and Nakaumi: a coastal brackish lagoon system., Limnology, 8, 281-294.
- 15)小松伸行,石井裕一(2006):北浦湖流の数 値シミュレーション,茨城県霞ケ浦環境科学

センター年報, 2, 111-121.

- 16) 佐々木克之(1993):内湾および干潟における物質循環と生物生産(3) 貧酸素水塊の形成機構,海洋と生物,86,170-177.
- 17) 佐々木道也(1980):網生簀養殖鯉の酸欠死
 予測に関する試み,茨城県内水面水産試験場
 研究報告,17,1-7.
- 18) 佐々木道也(1995): 霞ヶ浦北浦の網生簀養 殖漁場における溶存酸素量について,茨城県 内水面水産試験場研究報告,31,49-54.
- 佐々木道也(1993):網生簀養殖漁場における低酸素水の発生と風の影響について、茨城県内水面水産試験場研究報告、29,57-80.

湖沼からの Polynucleobacter 属細菌の分離と溶存態有機物の関係

渡邊 圭司,小松 伸行,石井 裕一

Isolation of genus Polynucleobacter from freshwater lakes and its ecological study

about dissolved organic matter

Keiji WATANABE, Nobuyuki KOMATSU, Yuichi ISHII

キーワード: Polynucleobacter, 溶存態有機物, 光分解, 微生物ループ

1 はじめに

Polynucleobacter 属細菌は、細胞の体積が0.1 μm³以下でウルトラミクロバクテリアに特徴 的なアルファベットのCに類似した形態を有 しており(海洋の浮遊細菌である SAR11 クラ スターの Pelagibacter ubique に代表される)¹⁾, 古くは繊毛虫(Euprotes属)の内部共生菌と して報告されている²⁾。一方,自由生活型の Polynucleobacter 属細菌も、16S rRNA 遺伝子を ターゲットとした培養を介さない分子生物学的 な菌叢解析手法 (DGGE = denaturing gradient gel electrophoresis) により、世界各地の淡水 湖沼に広く分布していることが明らかとなって いる³⁾。日本の山岳湖沼における DGGE 法によ る細菌群集解析においても、年間を通じ検出さ れるバンドおよび各湖沼で共通に検出されるバ ンドが Polynucleobacter 属細菌によるものである ことが示されている⁴⁾⁵⁾。また、オーストリアの 腐植栄養湖では, FISH 法 (fluorescence in situ hybridization) により, Polynucleobacter 属細菌 数が総細菌数の60%以上を占めたとも報告され ている⁶⁾。最近の研究では、共生型および自由生 活型の Polynucleobacter 属細菌では、ゲノムサイ ズおよび系統分類学的な位置の異なることが示さ れている 7)。

このように, Polynucleobacter 属細菌は淡水湖 沼において重要な細菌であるにもかかわらず,未 だ純粋分離に成功した例は限られており⁸⁾⁹⁾,そ の生態についは未だ不明な点が多い。

我々はこれまでに, Polynucleobacter 属細菌の簡 便で効率的な分離・培養方法を開発し報告した¹⁰⁾。 また,得られた Polynucleobacter 属細菌の炭素源 資化性試験を行ったところ,炭素源として有機酸 を特異的に要求し,糖質およびアミノ酸は資化で きないことを示した¹⁰⁾。水圏における有機酸の 供給源の一つとしては,溶存態有機物 (DOM = dissolved organic matter)の光分解 (太陽光に 含まれる UV-A および UV-B に起因する)により 生じることが報告されている¹¹⁾¹²⁾。

本報では、我々の考案した分離法による Polynucleobacter 属細菌の様々な湖沼からの分離 と、また Polynucleobacter 属細菌による DOM の 光分解生成物の利用を推定し実験的検証を試み た。

2 方法

2-1 試料採取

涸沼,手賀沼,印旛沼,牛久沼および桧原湖の 表層水(0-50 cm)を超純粋洗浄された容量 1L の滅菌ポリプロピレンボトル(和歌山 CIC 研究所 製)に採取し,クーラーボックスに入れ研究室に 持ち帰った。各湖沼水質については表1に示した。

2-2 浮遊細菌の分離, 培養および同定

平均粒子保持径 $0.7 \mu m$ のガラス繊維シリンジ フィルター (GF/F, Whatman 社製) で試水を 濾過した後,濾液 $100 \mu L \epsilon$ MR2A 寒天培地に 塗沫した (各採水地点で1つの試料につき1枚の プレートのみを使用)。27℃で1週間暗所で培養 した後,生じたコロニーについて16S rRNA 遺 伝子を解析し,同定を行った。実験の詳細につい ては,Watanabe ら¹⁰⁾の方法を参照した。

2-3 溶存態有機物の光分解生成物の利用

湖水(2007年7月27日に霞ヶ浦の湖心より 採水)をGF/Fで濾過した後,スーポアフィル ター(平均粒子保持径0.1µm,日本ポール社 製)で濾過した濾液を,ここでは溶存態画分と定 義した。濾過試料を石英試料ビンに入れ,水温 27℃に設定した恒温水槽中で,約8時間野外で

	Lake	Lake	Lake	Lake	Lake
Paramater	Ushikunuma	Inbanuma	Teganuma	Hibara	Hinuma
Grid reference	35° 56' N,	35° 47' N,	35° 51' N,	37° 39' N,	36° 16' N,
	140° 13' E	140° 14' E	140° 01' E	140° 03' E	140° 29' E
Sampling date	Dec. 6, 2007	Jan. 23, 2008	Jan. 23, 2008	Aug. 8, 2007	Dec. 14, 2007
Trophy	eutrophic	eutrophic	eutrophic	mesptrophic	brackish
рН	7.6	7.1	8.5	7.2	8.3
EC (µS cm ⁻¹)	265	332	334	58	15180
Chlorophyll- <i>a</i> (µg L ⁻¹)	23	40	129	1	13
COD _{Mn} (mg O L ⁻¹)	5.3	10.0	9.1	1.8	4.7
DOC (mg C L ⁻¹)	1.73	2.71	2.03	0.77	1.80
NO ³⁻ (µg N L ⁻¹)	1632	921	2120	29	1284
NO ²⁻ (µg N L ⁻¹)	18	16	74	1	36
NH ⁴⁺ (µg N L-1)	79	203	188	26	62
PO4 ³⁻ (µg P L-1)	0	6	15	1	3
Cl^{-1} (mg L ⁻¹)	17.8	22.3	31.3	6.9	4670

表1 各湖沼の水質データ

太陽光を照射した。アルミ箔で遮光したものを比 較試料とした。あらかじめ前培養した KF001 株 (霞ヶ浦より分離され *Polynucleobacter* 属細菌と高 い相同性を示した株)¹⁰⁾を最終菌体濃度 2.5 × 10⁵ cells mL⁻¹ で太陽光を照射した試料および遮 光した試料にそれぞれ加え,細胞の生育を ATP 活性(BacTiter-Glo microbial cell viability kit, Promega 社製)により経時的に測定した。

3 結果及び考察

3-1 様々な湖沼からの Polynucleobacter 属細菌 の分離

我々が開発した Polynucleobacter 属細菌の簡便 で効率的な分離・培養法(試水を GF/F フィルター で濾過した後、濾液をMR2A 培地で培養)によ り、様々な湖沼から Polynucleobacter 属細菌の分 離を試みたところ、1回のスクリーニング(1つ の試料につき1つの寒天プレートのみ使用)で, 牛久沼(富栄養湖),印旛沼(富栄養湖)および 手賀沼(富栄養湖)から Polynucleobacter 属細菌 を合計6菌株分離・培養することができた。一 方, 桧原湖(中栄養湖)および涸沼(汽水湖)か らは分離することができなかった(表2)。現在 までのところ,自由生活型の Polynucleobacter 属 細菌については、汽水域および海水域より分離さ れた例がない。桧原湖については中栄養湖であ り、富栄養湖と比較して全細菌数が少なかった可 能性がある(細菌数は未計測)。本分離法により, 各湖沼試料から得られた細菌は合計で32菌株 であり、そのうちおよそ 1/3 以上(23 菌株)が Betaproteobacteria であった。一般的に淡水湖沼 では Betaproteobacteria が優占することが多いが、 琵琶湖においては Alphaproteobacteria が優占する ことが報告されている¹³⁾。

3-2 Polynucleobacter 属細菌による溶存態有機 物光分解生成物の利用

湖水を太陽光照射により光分解した試料 に Polynucleobacter 属 細 菌 (KF001 株) を 植 菌し ATP 活性により生育を測定したところ, ATP 濃度の増加が見られた。一方, アルミ箔 で遮光した試料については ATP 濃度の増加は 観察されなかった(図1)。以上の結果より、 Polynucleobacter 属細菌が湖沼において溶存態有 機物の光分解生成物を利用している可能性が示唆 された。本研究では、霞ヶ浦の溶存態有機物の光 分解から有機酸の生成および生成した有機酸の Polynucleobacter 属細菌による取り込みまでは検 証できていないが, Polynucleobacter 属細菌は炭 素源として有機酸のみを資化し¹⁰⁾,オーストリ アの貧~中栄養湖の水深 60 m にわたる細胞数の 鉛直分布調査では、水面から水深4mまでに分 布が著しく偏っていること¹⁴⁾などが報告されて いることから、我々の実験結果と照らし合わせて みても、湖沼において Polynucleobacter 属細菌は 溶存態有機物の光分解により生じた有機酸を利用 している可能性が高いと推測される。今後この点 について更なる検証を行っていく予定である。

表2 谷	「湖沼か	らの	Polynucleobacter	属細菌の	分離
------	------	----	------------------	------	----

Sampling	Phylogenetic group	Isolate [Accession no.]	Length	Top match [Accession no.]	Identity
sites			(bp)		(%)
	Betaproteobacteria				
IN		INBF002 [AB426573]	1425	Beta proteobacterium MWH-C5 [AJ938026]	99
IN		INBF003 [AB426574]	1415	Beta proteobacterium LI2-55 [AJ964892]	99
IN		INBF004 [AB426575]	1422	Beta proteobacterium LI2-55 [AJ964892]	99
IN		INBF005 [AB426576]	1422	Beta proteobacterium LI2-55 [AJ964892]	99
IN		INBF007 [AB426578]	1430	Beta proteobacterium HMW-C4 [AJ938025]	99
IN		INBF008 [AB426579]	1427	Beta proteobacterium MWH-C5 [AJ938026]	99
TE		TEGF002 [AB426581]	1427	Beta proteobacterium LI2-55 [AJ964892]	99
TE		TEGF003 [AB426582]	1423	Beta proteobacterium LI2-55 [AJ964892]	98
TE		TEGF004 [AB426583]	1433	Beta proteobacterium LF5-52B [AJ964891]	99
TE		TEGF005 [AB426584]	1424	Beta proteobacterium LI2-55 [AJ964892]	99
TE		TEGF007 [AB426585]	1423	Beta proteobacterium BAC159 [EU180541]	99
TE		TEGF008 [AB426586]	1422	Beta proteobacterium LI2-55 [AJ964892]	99
HIB		HF002 [AB376662]	1358	Methylibium petroleiphilum PM1 [CP000555]	98
HIB		HF006 [AB376663]	1387	Methylibium sp. BAC199 [EU130974]	98
HIB		HF007 [AB376664]	1400	Methylibium sp. BAC199 [EU130974]	98
HIB		HF008 [AB376665]	1400	Methylibium sp. BAC199 [EU130974]	98
US		UF008 [AB426569]	1426	Polaromonas sp. BAC70 [EU130985]	99
US	Polynucleobacter	UF003 [AB426564]	1420	Polynucleobacter sp. QLW-P1DMWA-1 [CP000655]	99
US		UF006 [AB426567]	1427	Beta proteobacterium MWH-Molso2 [AJ550672]	100
US		UF007 [AB426568]	1417	Beta proteobacterium MWH-Molso2 [AJ550672]	100
US		UF009 [AB426570]	1424	Polynucleobacter sp. QLW-P1DMWA-1 [CP000655]	100
IN		INBF001 [AB426572]	1423	Polynucleobacter sp. MWH-Molso1 [AJ550671]	100
TE		TEGF001 [AB426580]	1424	Polynucleobacter sp. QLW-P1DMWA-1 [CP000655]	100
	Alphaproteobacteria				
US	Sphingomonas	UF010 [AB426571]	1382	Sphingomonas sp. HTCC503 [AY584572]	99
HIN		HINF002 [AB426560]	1386	Sphingomonas sp. JQ1-11 [DQ132883]	97
HIN	Brevundimonas	HINF003 [AB426561]	1359	Brevundimonas sp. V4.B0.05 [AJ244704]	100
HIN		HINF004 [AB426562]	1356	Brevundimonas sp. FWC30 [AJ227796]	98
	Actinobacteria				
US		UF001 [AB426563]	1414	Actinobacterium MWH-VicMua1 [AJ565417]	100
US		UF004 [AB426565]	1406	Actinobacterium MWH-HuqW11 [AJ630368]	100
US		UF005 [AB426566]	1390	Actinobacterium MWH-VicMua1 [AJ565417]	99
HIN	Microbacterium	HINF001 [AB426559]	1398	Microbacterium sp. EMB-C-1 [DQ152000]	99
	Flavobacteria				
IN	Flavobacterium	INBF006 [AB426577]	1413	Flavobacterium succinicans DSM4002 [AM230492]	98

US; Lake Ushikunuma, IN, Lake Inbanuma, TE; Lake Teganuma, HIB; Lake Hibara, HIN; Lake Hinuma

これまでに,溶存有機物の光分解生成物が細菌 の生育を促進させるという報告は数多くあるが, いずれも細菌を細菌群集として扱っているものが 殆どであり,分離株のレベルで検証した例は無 い。湖沼における微生物ループの一端(カーボン フロー)を分離株のレベルで検証し明らかにする ことができれば,湖沼の溶存態有機物の生成およ び分解に関する詳細な知見が得られるものと考え られている。

謝 辞

本研究は文部科学省から「特別電源所在県科学

技術振興事業補助金」の交付を受けて実施された ことを記して謝意を表する。

参考文献

- Morris, R. M., Rappe, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., and Giovannoni, S. J. (2002) : SAR11 clade bominates ocean surface bacterioplankton communities., Nature, 420, 806-810.
- Heckmann, K., and Schimidt, H. J. (1987): *Polynucleobacter necessarius* gen. nov., an obligately endosymbiotic bacterium living

図1 湖水の光分解試料による Polynucleobacter 属 細菌の生育 (n = 5)

in the cytoplasm of *Euprotes aediculatus.*, International Journal of Systematic Bacteriology, 37, 456-457.

- 3) Burkert, U., Babenzien, D., Zwirnmann, E., and Pernthaler, J. (2003) : Members of readily enriched β -proteobacterial clade are common in surface waters of a humic lake., Applied Environmental Microbiology, 69, 6550-6559.
- 4) 堤正純,小島久弥,福井 学(2008):オコ タンペ湖水柱における微生物群集構造の時空 間的変動,第73回日本陸水学会講演要旨集, 291p.
- 5)藤井正典,小島久弥,岩田智也,占部城太郎, 福井 学(2008):山岳湖沼水中に生息する バクテリア群集の特徴,第73回日本陸水学 会講演要旨集,292p.
- 6) Hahn, M., W., Pöckl, M., and Wu, Q. L. (2005) : Low intraspecific diversity in *Polynucleobacter* subcluster population numerically dominating bacterioplankton of a freshwater pond., Applied and Environmental Microbiology, 71, 4539-4547.
- Vannini, C., Pöckl, M., Petroni, G., Wu, Q. L., Lang, E., Stackebrandt, E., Schrallhammer, M., Richardson, P. M.,

and Hahn, M. W. (2007) : Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living *Polynucleobacter* strains (*Betaproteobacteria*)., Environmental Microbiology, 9, 347-359.

- 8) Hahn, M. W., Stadler, P., Wu, Q. L., and Pöckl, M. (2004) : The filtrationacclimatization method for isolation of an important fraction of the not readily cultivable bacteria., Journal of Microbiological Methods, 57, 379-390.
- Page, K. A., Connon, S. A., and Giovannoni S. J. (2004) : Representative freshwater bacterioplankton isolated from Crater Lake, Oregon., Applied Environmental Microbiology, 70, 6542-6550.
- Watanabe, K., Komatsu, N., Ishii, Y., and Negishi, M. (2009) : Effective isolation of bacterioplankton genus *Polynucleobacter* from freshwater environments grown on photochemically degraded organic matter., FEMS Microbiology Ecology, 67, 57-68.
- Moran, M. A., and Zepp, R. G. (1997) : Role of photoreaction of biologically labile compounds from dissolved organic matter., Limnology and Oceanography, 42, 1307-1316.
- 12) Bertilsson, S., and Tranvik, L. J. (1998) : Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton., Limnology and Oceanography, 43, 885-895.
- 13) Nishimura, Y., and Nagata, T. (2007) : Alphaproteobacterial dominance in a large mesotrophic lake (Lake Biwa, Japan)., Aquatic Microbial Ecology, 48, 231-240.
- 14) Wu, Q. L., and Hahn, M. W. (2006) : High predictability of the seasonal dynamics of a species-like *Polynucleobacter* population in a freshwater lake., Environmental Microbiology, 8, 1660-1666.

霞ヶ浦における植物プランクトン生産物の有機炭素プールへの寄与

佐藤雄飛*,渡邊圭司,濱 健夫*

Contribution of photosynthetically-produced phytoplankton organic matter to organic carbon pool in Lake Kasumigaura

> Yuhi SATO^{*}, Keiji WATANABE, Takeo HAMA^{*} キーワード:溶存態有機物,分子量組成,難分解化

1 はじめに

霞ヶ浦は, 富栄養化が進行した状況にあり, 湖 水中には多くの有機物が存在している。それらの 有機物の起源は,河川水などによって湖外から供 給される外来性有機物と, 霞ヶ浦湖内において植 物プランクトンの光合成によって供給される自生 性有機物に大別される。水質汚濁防止法などに よる排水規制によって, 霞ヶ浦においては, 外 来性の有機物は減少傾向にあることが予想され る。実際に、湖内では昭和 50 年代に約 14mg l⁻¹ であった COD が, 60 年代には現在に近い値(8 ~ 10mg l⁻¹ 程度) まで低下している。しかしな がら、平成に入ってからはあまり減少せず、7~ 10mg l⁻¹の間を推移している。COD が減少しな い要因としては、外来性有機物の流入が未だ多い こと、もしくは自生性有機物の影響が大きいこと が考えられる。しかしながら先にも述べたように、 外来性有機物については減少傾向にあると予想さ れる。そこで本研究においては、自生性有機物の 起源である,植物プランクトン光合成生産物につ いての溶出・分解実験を行い、自生性有機物の湖 水への溶存・残存過程を評価した。その際,¹³C トレーサーを用いて、溶出・分解過程における有 機物の各サイズ画分(粒子径・分子量で分画)の量・ 組成の変化を追跡した。湖水中の有機物は、各サ イズによって様々な異なった特性を持っており, これを利用することにより、自生性有機物の動態 を把握した。これらから得られた結果と、湖水の 水質を比較することにより、霞ヶ浦における自生 性有機物の有機炭素プールへの影響を評価した。

※筑波大学 生命環境科学研究科

2 試料と方法

2-1 採水および培養

2007年7月24日, 霞ヶ浦湖心において表層 水をバケツ採水し、容量 20L のポリカーボネー ト製容器2本に移した。試料を含む容器は、黒い ポリ袋で遮光した後,実験室に持ち帰り,暗所で 保存した。翌日、採水した容器2つに、栄養塩 $(NaNO_3; 最終濃度 80 \mu M, NaHPO_4; 最終濃度$ 5µM, Na₂SiO₃; 最終濃度 29µM), および光 合成生産物を標識するために、NaH¹³CO₃を添加 した (無機炭素中の¹³C atom%は 12.64%となっ た)。添加後, 直ちに人工光 (64 µ mol m⁻² sec⁻¹) のもとで24時間,明期培養を行った。その際, 培養開始から0,6,12,18,24時間に培養器 より1.5L採水し、直ちにろ過を行った後、ろ液 は-20℃で凍結保存した。明期培養終了後,培養 器を暗所に移し、溶出・分解実験を行った。暗 期培養においては、1,2,3,5,7,10,15, 32、および 57 日目において、明期培養時と同様 に各培養器から 1.5L 採水を行い、直ちにろ過し た後,得られた試料は-20℃で凍結保存した。

2-2 試料の処理

培養実験中の各時間において得られた試料は, まず原水 90 ml に 25% グルタールアルデヒド溶 液 10 ml を加え最終濃度 2.5% として,バクテリ ア細胞数計測用サンプルとして冷蔵保存した(図 1)。残りの試料は,有効保持粒子径 0.7µmのガ ラス繊維ろ紙(Whatman GF/F,450℃で 5 時 間加熱処理したもの)でろ過を行った。その際, 懸濁態有機炭素(POC)とクロロフィル a 測定 用試料として,ろ過を行ったガラス繊維ろ紙の一 部を -20℃で凍結保存した。また,ろ液は一部を 有機炭素濃度測定用として,ポリカーボネート製 容器に入れて凍結保存した後に,解凍し孔径 0.1 μ m の Anodisc(47 mm ϕ , Millipore)によ りろ過を行った。Anodisc の一部を POM 測定用 に -20°Cで凍結保存し、Anodisc ろ液は限外ろ過 を行うまで, -20°Cで凍結保存した。限外ろ過の 際には Anodisc ろ液を解凍し,一部を炭素濃度 測定用にポリカーボネート製容器に凍結保存した 後に, Proflux M12 Tangential Flow Filteration System (Millipore) と限外ろ過カートリッジ (CDEF002 LA,分画分子量 1kDa, Millipore) を用いて,高分子量溶存態有機物(高分子量 DOM)(>1kDa)と低分子量溶存有機炭物(低 分子量 DOM)(< 1kDa)に分画した。

2-3 栄養塩濃度

Anodisc ろ液の栄養塩濃度を、オートアナラ イザー(AACS-II, BRAN+LUEBBE)を用いて 硝酸イオン、亜硝酸イオン、アンモニウムイオン およびリン酸イオンについて測定した。

2-4 バクテリア数

冷蔵保存しておいたグルタールアルデヒドで 固定したサンプルを,DAPI (4,6-diamidino-2phenylindole) で染色後,孔径 0.2μ mのブラッ クタイプのポリカーボネートメンブレンフィル ター (25 mm ϕ , Millipore) 上に捕集した後, 蛍光顕微鏡 (BH-2, Olympus) によりバクテリ ア数を計測した¹⁾。

2-5 有機炭素量および¹³C atom%

ガラス繊維ろ紙および Anodisc のろ液と、高 分子量 DOM,低分子量 DOM の有機炭素量は、 全炭素計 (TOC5000A, Shimazu) を用いて, 高温触媒燃焼酸化法により測定した。POC は, ガラス繊維ろ紙と Anodisc について、塩酸蒸気 で無機炭素を除いたあと、元素分析計 / 質量分析 計 (Fisons, Flash EA/Thermo Fisher, ConFloIII & DELTA plus Advantage) により炭素量と ¹³C atom%を測定した。高分子量 DOM,低分子 量 DOM o^{13} C atom % に関しては, Hama s^{2} を参考に測定を行った。まず限外ろ過したろ液 を、凍結乾燥によって5~10倍に濃縮し、検 出可能な炭素濃度にした。次に濃縮したろ液に 2Nの塩酸を加え、純空気で5分間曝気して無 機炭素を除き,水酸化ナトリウムにてろ液を中 和した後, そのろ液をスズカプセル (0.45 ml, LUDISWISS)内において1~2ml 程度を60℃ 下で乾固し、その乾固した試料を、元素分析計 / 質量分析計によって¹³C atom%を測定した。高 分子量 DOM,低分子量 DOM については濃縮率 を一定にすることが困難なため、全炭素計での測 定に比べ、誤差が大きくなりやすいと考えられた ことから,元素分析計/質量分析計によっての有 機炭素量測定を行わなかった。

2-6 生産量の算出

測定した値からの生産物濃度の算出については 以下の計算式より求めた³⁾。

生産物濃度 (μ gC l⁻¹)=[全有機炭素濃度 (μ gC l⁻¹)]×(C_{is} - C_{ns})/(C_{ic} - C_{ns})・・・(1)

C_{is}:培養試料の有機炭素中の¹³C atom%

C_{ns}:非培養試料の¹³C atom%

C_{ic}:溶存態無機炭素としての¹³C atom%

図1 試料の処理

3 結果

3-1 クロロフィル a 濃度の変化

培養開始時,採水した水には 45.0 μ g Γ^1 存在し ていた(図 2)。その後,24時間の明期培養によ り 103 μ g Γ^1 まで増加した。暗期培養に移行して からは,暗期培養1日目まで増加が見られた(114 μ g Γ^1)。暗期培養1日目以降は,1-7日目までは 急激に減少し(7日目:10.7 μ g Γ^1),その後,32 日目まで緩やかに減少した(32日目:1.0 μ g Γ^1)。 57日目において,クロロフィル a 濃度は検出限 界以下となった。

3-2 栄養塩濃度

原水の栄養塩濃度は、亜硝酸イオンは 0.28 μ mol l⁻¹、硝酸イオン 1.07 μ mol l⁻¹、アンモニウム イオン 3.57 μ mol l⁻¹、リン酸イオン 0.26 μ mol l⁻¹ であった。明期培養終了時の 24 時間目において は、それぞれ 1.29 μ mol l⁻¹、9.61 μ mol l⁻¹、14.0 μ mol l⁻¹ および 2.2 μ mol l⁻¹ であった。

3-3 バクテリア数

培養開始時には 1.7×10⁷ cells ml⁻¹バクテリア が存在していたが,明期培養終了にかけて約4倍 の 5.8×10⁷ cells ml⁻¹まで増加した(図3)。その 後,暗期培養に移行後,暗期培養1日目では,暗 期培養開始時から減少し(4.8×10⁷ cells ml⁻¹), 2日目にかけてわずかな増加を示した(5.0×10⁷ cells ml⁻¹)。大きく増加していき(3日目:6.0× 10⁷ cells ml⁻¹,5日目:7.2×10⁷ cells ml⁻¹),そ の後は7,10,15日目にはそれぞれ4.8,3.4 お よび1.9×10⁷ cell sml⁻¹と大きく減少し,さらに, その後は緩やかに減少した(57日目:0.8×10⁷ cells ml⁻¹)。

3-4 各画分の生産物濃度

3-4-1 POC画分(GF/F POC+Anodisc POC)

明期培養開始から 18 時間までは生産物濃度は 増加した (1570 μ gC Γ^1)。18-24 時間にかけて はわずかに減少した (1550 μ gC Γ^1 , 図 4)。そ の後の暗期培養においては 0-7 日目にかけて急速 な減少が認められ, (7 日目:287 μ gC Γ^1) それ 以降は緩やかに減少し, 32 日目および 57 日目 においてはそれぞれ, 114 μ gC Γ^1 , 78.8 μ gC Γ^1 となった。57 日目の値は分析上の問題から,炭 素量を 3 ~ 4 割ほど過大評価してしまった可能 性がある。

3-4-2 高分子量(> 1kDa)DOC

明期培養中において,高分子量 DOC は低濃度 で(3.2~6.4 μ gC l⁻¹),また濃度に大きな変動 は認められなかった。暗期培養中は,ごく初期 (0-3 日目)においては,明期と同程度の濃度で あったが(6.1~8.0 μ gC l⁻¹),5日目になると 急激な増加を示した(5 日目:61.5 μ gC l⁻¹)。そ

図 2 クロロフィル *a* の濃度変化 (*n* = 2) ※培養日数 0 日目が暗期培養 0 日目にあたる

99

の後 5-15 日目にかけて急速に減少し,(15 日目: 14.9μgC l⁻¹),57 日目においては 8.5μgC l⁻¹ と なった。

3-4-3 低分子量(< 1kDa)DOC

低分子量 DOC は、明期培養中は高分子量 DOC よりもさらに存在量が少なく (1.1 ~ 2.9 μ gC Γ^1),また高分子量 DOC と同様に、大き な変動を示した。暗期培養においては高分子量 DOC と同じく初期 (0-2 日目)までは少なかっ たが (1.7 ~ 6.3 μ gC Γ^1),3日目になると増加 し始め (3 日目:19.0 μ gC Γ^1),5日目には54.2 μ gC Γ^1 となった。その後,57日目において 39.7 μ gC Γ^1 存在していた。

4 考察

4-1 クロロフィル a および生産物濃度変化

明期培養において、クロロフィル a 濃度の増加 に伴い、生産物濃度が増加した(図5)。その際、 生産物の9割以上がPOC 画分として生産された。 また、クロロフィル a 濃度は植物プランクトンの 現存量を反映することから、植物プランクトンの 増加に伴い、生産物濃度が増加していることが分 かった。また18-24 時間目において生産物濃度 の減少が見られる。光合成生産を律する要因とし て栄養塩が考えられるが、窒素、リンは十分に残 存している。このことから、その他の栄養塩(ケ イ素など)や微量金属が枯渇したことが推定され

図4 生産物の濃度変化 (POC:n = 4, DOC:n = 2)

る。暗期培養においては、クロロフィル a 濃度は 培養初期において速やかに減少し、培養後期には 検出限界以下の濃度となった。このことから光の 遮断によって速やかに植物プランクトンが死滅し たと考えられる。

4-2 各画分における生産物濃度の変化とバクテ リア数の動態

明期培養において生産物濃度の増加に伴い,バ クテリア数も増加した(図6)。これは光合成に

図5 クロロフィルaと生産物の濃度変化 ※(左軸が生産物濃度,右軸がクロロフィルa濃度 を表す)

図6 バクテリア数と生産物濃度の変化 ※(左軸が生産物濃度,右軸がバクテリア数を表す)

よってバクテリアの基質が増加したためと考えら れる。暗期培養においては,主に POC 画分とし て生産された光合成生産物が,0-7 日目にかけて 速やかに減少し,それに伴い DOC 画分中の生産 物とバクテリア数が増加した。これはバクテリ アが POC 画分中の生産物を利用する過程で,そ の一部分が DOC として溶出してきたと考えられ る。7 日目以降は,POC,DOC 共に緩やかに減 少したが,POC の方が減少した割合は大きかっ た。一般的に水中の有機物は,微生物分解に対し て粒子径の小さいものほど安定であるとされて おり⁴⁾,この結果は従来の研究と一致するもので あった。

4-3 サイズ別の生産物の安定性

主に POC 画分として生産された光合成生産物 は、暗期培養においては、先にも述べたように培

養初期において速やかに分解され、それに伴って DOC が溶出してきた。その際, DOC の分子量 組成を見てみると、DOC 溶出が起こる5日目に おいて、高分子量 DOC 画分と低分子量 DOC 画 分中の生産物濃度の比は、約6:5となっており、 高分子量 DOC と低分子量 DOC は、ほぼ同程度 溶出してきた。しかしながら培養後期を見た場合, 高分子量 DOC 画分の濃度は大きく減少している のに対して、低分子量 DOC 画分の濃度はあまり 変化していない(図4)。実際に、培養期間中に 最高濃度となった日(5日目)と、暗期培養57 日目の濃度を比較してみると、低分子量 DOC 画 分の値が非常に高くなっていることが分かる(図 7,表1)。この結果より,光合成生産物由来の低 分子量 DOC の微生物分解に対する安定性が示唆 された。また過去の研究より, 高分子量 DOC の 方がバクテリアの利用性が高いことが報告されて

図7 光合成生産物のサイズ組成の変化

表1 各サイズ	画分における	5 光合成生產	新物の多	安定性
---------	--------	---------	------	-----

	0 日 目	57 日目	57 日目/0 日目
GF/F+Anodisc POC	1550 μgC l ⁻¹	78.8 μgC l ⁻¹	5.1%
	5日目	57 日 目	57 日目/5 日目
高分子量 DOC	61.5 μgC l ⁻¹	8.5 μgC l ⁻¹	13.8%
低分子量 DOC	54.2 µgC l ⁻¹	39.7 μgC l ⁻¹	73.2%

おり⁵⁾,この結果は、従来の報告とも一致した。

4-4 霞ヶ浦湖水との比較

本研究より、光合成生産物由来の有機物は、溶 出・分解過程において低分子量 DOC として残存 していくことが分かった。しかしながら実際に 霞ヶ浦湖水中における DOC の分子量組成は、お よそ高分子量 DOC:低分子量 DOC = 6:4 となっ ており(表2),高分子量側に偏った分子量組成 となっていた。もし、光合成生産物由来の有機物 が湖内で優占していたとすれば、本実験で得られ た結果のように、低分子量 DOC が優占してくる と考えられる。実際に、光合成生産物が有機物源 として優占する海洋においては、DOC の8割以 上が 1 kDa 以下の低分子量 DOC である⁶⁾。しか しながら、今回そのようにならなかった理由とし て2つの可能性が考えられる。1つは、自生性有 機物以外の有機物源の影響である。河川より流入 する陸起源の有機物が多量であり、その有機物の 分子量組成が高分子量に偏った組成を有していた とすれば, DOC の分子量組成も高分子量に偏る ことが考えられる。もう1つの可能性として、生 産されて間もない自生性有機物が多量に存在して いるという可能性である。本実験において自生性 有機物は、溶出・分解過程を経て低分子量 DOC として残存することが確認されたが、溶出・分解 過程の初期においては高分子量 DOC が優占して いる(暗期培養5日目において高分子量 DOC: 低分子量 DOC = 6:5)。つまり, 生産されて間 もない自生性有機物が多量に存在していた場合, 湖内の DOC が高分子量に偏ることが考えられ る。しかしながら本研究結果は、低分子量 DOC が比較的長期にわたり残存することを示している ことから,その影響を無視することはできない。 自生性有機物と外来性有機物の分解性および蛍光 特性の差異を用いて行われた研究⁷⁾においては, 霞ヶ浦における自生性有機物と外来性有機物の影 響はおよそ半々であるとしており,また14Cと ¹³Cを用いて起源推定を行った研究⁸⁾では,霞ヶ 浦湖水の有機物は,単一起源ではないことが示唆 されている。そのような従来の研究から考えても, 霞ヶ浦湖水中の有機物は,自生性有機物だけでな く,外来性有機物の影響も強く受けていることが 示唆される。

5 総括

本研究において, 霞ヶ浦湖水における自生性有 機物の溶出・分解過程における動態を推測するこ とができた。その結果を基にして霞ヶ浦湖水の有 機物組成を見た場合,自生性有機物の影響では説 明が付かない部分があった。これより,湖水中の 有機物は自生性有機物だけでなく,外来性有機物 の影響も強く受けていることが示唆された。

引用文献

- Porter, K.G., and Feig Y.S. (1980) : The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943-946.
- Hama, T., and Yanagi, K. (2001): Production and natural aldose composition of dissolved carbohydrates Excreted by natural marine phytoplankton population. Limnology and Oceanography, 46, 1945-1955.
- 3) Hama, T., Miyazaki, T., and Ogawa, Y.

		高分子量 DOC	低分子量 DOC
2007年7月25日	霞ヶ浦湖心(表層)	1530 μgC/L	938 μgC Ι ⁻¹
2008年2月26日	霞ヶ浦湖心(表層)	1730 µgC/L	975 μgC Γ ⁻¹
	(水深 6m) 1870 μgC/L	966 μgC l ⁻¹

表2霞ヶ浦湖水のDOCの分子量組成

(1988) : Measurement of photosynthetic production of marine phytoplankton population using a stable 13C isotope. Marine Biolology, 73, 31-36.

- 4) Amon, R.M.W., and Benner, R. (1996) : Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 41, 41-51.
- 5) Amon, R.M.W., and Benner, R. (1994) : Rapid cycling high-molecular-weight dissolved organic matter in the ocean. Nature, 396, 549-552.
- 6) Benner, R. (2002) : Chemical composition and reactivity. *Biogeochemistry of marine*

dissolved organic matter (Hansel D.A., and Carlson C.A., eds), pp. 59-90, Academic Press, San Diego.

- Fukushima, T.,and Park, J., Imai, A. and Matsushige, K. (1996) : Dissolved organic carbon in a eutrophic lake:dynamics biodegradability and origin. Aquatic Sciences, 58, 139-157.
- 8) Nara, F., and Imai, A., and Matsushige, K. (2007) : Seasonal variation in sources of dissolved organic carbon in a lacustrine environment revealed by isotopic measurements ($\Delta 14C$ and $\Delta 13C$). Radiocarbon, 49, 767-773.

夏季の北浦における湖上風の観測と湖流に及ぼす影響

小松伸行,石井裕一

Observation of Wind Fields over Lake Kitaura and Their Effect on Lake Current in Summer Nobuyuki KOMATSU and Yuichi ISHII

キーワード:風,吹送流,霞ケ浦

1 はじめに

電ケ浦の湖流は主に風によって形成される吹送 流である¹⁾²⁾。電ケ浦では吹送流がアオコの空間 分布や貧酸素水塊の動態などに影響することが報 告されており³⁾⁴⁾,湖内の富栄養化問題に対処す るためには吹送流の把握とモデル化が重要である。

一般に風は周囲の地形などの影響を受けて時間 的・空間的に非一様な分布をしており,この時空 間分布を考慮するか否かで流動場の数値シミュ レーションの結果が大きく変化することが報告さ れている^{5)~7)}。これらの問題を解決するため,数 値気象モデルを用いた湖上風の予測結果や広範囲 に渡る現地観測結果の空間補間などを用いること により,数値シミュレーションの再現性を向上さ せる試みが数多くなされている⁸⁾⁹⁾。しかしながら, これらの方法は流動モデルの計算負荷を大きくす ることになり,実用性については課題が残る。 電ケ浦では国土交通省により湖上の観測所にお ける気象等データの収集が実施されており,直接 的な湖上風の観測データとして利用が可能である が,陸上の観測データを使用せずに空間補間を行 うには地点数が少ない。特に北浦においては釜谷 沖1地点しか観測点が設けられていない。限ら れた湖上風の観測データが対象水域の風分布を代 表していれば,空間補間等を行わずに数値シミュ レーションに用いることが可能であるが,湖上風 の時空間分布に関する研究は十分に実施されてい ない。

そこで本研究では、アオコの異常増殖や貧酸素 水塊の発生が見られる夏季を対象に湖上風の解析 を行い、釜谷観測所の湖上風データが北浦の風分 布を代表しているか検討するとともに、数値シ ミュレーションにおける実用的な風分布の扱い方 について考察した。

Fig. 1 Location of study sites

2 方 法

観測地点の概要を Fig. 1 に示した。北浦北部 の幅約 600m の水域に湖岸から約 200m 沖出し された網生簀養殖用筏の先端部に風向・風速計 (横河ウェザック製A-802/A-702)を設置し、阿 玉沖における1時間毎の湖上風の観測を実施し た。北浦の中央部に位置する釜谷沖の観測所にお ける湖上風およびその他の気象観測データは国土 交通省関東地方整備局霞ヶ浦河川事務所から提供 を受けた。併せて北浦の南端部に位置する鰐川, 西浦の湖心、掛馬沖、土浦、出島および小高の観 測地点における風のデータについても同様に提供 を受けた。また、つくば(館野)気象台の気象 データは気象庁ホームページを使用した。対象期 間は2006年6月6日~2006年9月30日とし た。なお、各地点の風向・風速計の高度は4m~ 12m と差があるため、高度 10m の風速(= 観測 値×(10/風速計の高さ)^{1/7})に換算した¹⁰⁾。

湖内の流況観測は超音波ドップラー流速計 (ADCP; Nortek 製アクアドッププロファイラー NB型 2MHz)を用い, Fig.1 に示す 8 地点(K1 ~K8)において 2006 年 6 月 7 日~2006 年 7 月 10 日および 2006 年 7 月 25 日~2006 年 9 月 11 日に実施された。北浦の湖流にはセイシュ の影響による 2 時間弱の周期的な変動があること が報告されている¹¹⁾。このため,各層の流況デー タには 100 分間の移動平均をかけてセイシュの 影響を取り除き,風向・風速に合わせて毎正時の 値を抜き出したデータを解析に使用した。

3 結果と考察

3-1 霞ケ浦の風分布の概観

Fig. 2 に 2006 年 6 月 6 日 12 時 ~ 9 月 30 日 23 時の各地点における風配図を示した。つくば 気象台の観測結果から,対象期間中この地域では 東南東~北東よりの風が卓越した。陸上の風速は, ほとんどが 4m s⁻¹未満であった。

西浦の湖心では北東と東北東よりの風,掛馬沖 では北東と東よりの風の出現頻度が高くなった。 北浦の釜谷沖の風分布は西浦湖心に近い分布であ り北東よりの風が卓越した。湖の沖合に位置する これら3地点では、つくばと比較して風速が大 きくなっており、6m s⁻¹以上の強い風も多く観 測された。湖上における風速の増加は、陸と水域 間の表面粗度の違い⁹⁾ が影響したものと考えら れる。鰐川では風速がわずかに小さく、やや南よ りの成分が多くなるものの、湖心や釜谷と類似し た風分布が観測された。西浦沿岸部の土浦、出島 および小高では、少しずつ異なった風向が観測さ れており、風速はつくばより大きいものの、湖上 のような 6m s⁻¹ 以上の強い風はほとんど見られ なかった。山口ほか¹²⁾ は 1991 年の西浦周辺の 観測データに加重 1 次補間法を用いた空間補間 を行い、風速は湖心で大きく周辺で小さくなるが、 風向の空間変化は少ないことを報告しており、今 回得られた西浦の観測データにも同様の傾向が見 られた。

北浦の阿玉沖では、湖上における観測にもかか わらず、4m s⁻¹未満の風速が大部分であり陸上 とほとんど差がない。また、風向は釜谷と比較し て東北東~北北東よりの出現頻度がかなり低くな るとともに、東よりの成分を含む風向が多くな る。また、風速は小さいものの、他の地点にはほ とんど見られない北よりの風が高頻度で出現して いた。これらは阿玉沖観測地点の北東~北北東に 存在する湖岸とその後背地形の影響を受けたもの と考えられる。

北浦の阿玉沖と釜谷沖における風向風速の時間 変化を比較するため,Fig.3に湖上風のベクトル 図を示した。なお,各月のベクトル図のうち,上 段は阿玉沖,下段は釜谷沖の風向風速を表してい る。9月に顕著なように,釜谷沖で東北東~北北 東よりの強い風が観測される期間に阿玉沖では明 らかに風速が小さくなる傾向が認められた。一方, 例えば6月14~15日や9月18~19日のように, 南~南東よりの風に対しては両地点の風向風速に 大きな違いは見られなかった。霞ケ浦周辺では冬 には西風が多く見られるが,その他の季節には東 ~北よりの風が多く,特に強風の卓越方向は北東 あるいは北北東であることが報告されている¹⁾¹²⁾。 これらの結果から,阿玉沖の風速は年間を通して 釜谷沖よりも小さい傾向があると推察される。

以上のように、つくば地方で東南東〜北東より の風が卓越した時期の観測において、湖上に作用 する風向・風速には地域性があることが確認され た。特に南北に細長い北浦では、水域の幅が広い

Fig. 2 Wind rose at each wind observation site (06/Jun./2006 \sim 30/Sep./2006)

Fig. 3 Vector plots of wind at Adama and Kamaya (6/Jun./2006 \sim 30/Sep./2006)

南部で比較的強い湖上風が作用するのに対し,幅 の狭い北部では弱くやや偏向した湖上風が作用す ると考えられた。

3-2 北浦の湖上風と湖流との関係

Fig.4 に、風分布の地域性が顕著となる北東風 が卓越した 2006 年 8 月 15 日~8 月 16 日の阿 玉沖・釜谷沖の湖上風および K2・K6 の最上層に おける湖流をベクトル図で示した。なお、北浦の 湖流には常陸利根川の水門操作が影響するが¹³⁾, この期間には水門操作は実施されなかった。釜谷 沖では3~8m s⁻¹の北東よりの風が連続して吹 いており(Fig.4(b)), 直近のK6の湖流(Fig.4(d)) を見ると、釜谷沖の湖上風に対応した湖流が形成 される傾向が認められる。阿玉沖では釜谷沖と比 較して風向の違いは少ないものの風速が非常に小 さくなっており (Fig.4 (a)), 北浦北部の水域に おいて風が湖面に与える影響は北浦南部と比べて 小さいことが予想される。しかしながら, K2 で は風向と異なる南東から北西へ、K6よりも流速 の大きい湖流が形成されていた (Fig.4 (c))。

Fig. 5 は, 流況観測が実施された期間のうちで 最も長く水門操作が実施されなかった 2006 年 8 月 19 日~9月7日の 20 日間における阿玉沖・ 釜谷沖の風速および K2・K6 の最上層における 流速の時間変化を示した。この図では方向性の情 報が除かれており, ベクトル図と比べて風と湖流 の変動に見られる周期性が強調されている。風速 の変動には、昼頃から夕方にかけて吹く海風によ る影響と考えられる明確な1日周期の変動¹⁾が 見られた。風向が南よりとなる傾向が見られた 8月19日~24日や8月31日~9月1日には、 阿玉沖と釜谷沖の風速に大きな差はないが、北よ りの傾向となった他の期間には阿玉沖と比較して 釜谷沖の風が強く長時間継続していたことがわか る。このような風の変動に対し、流速にも1日 周期の変動が明確に現れていた。また、阿玉沖と 釜谷沖の風速に大きな差がない8月19日~24 日や8月31日~9月1日には、K2とK6の流 速にも差は見られない。しかし、北よりの風とな る期間には阿玉沖の風速が釜谷沖よりも小さいに

Fig. 4 Vector plots of (a) wind at Adama, (b) wind at Kamaya, (c) current at K2, and (d) current at K6 ($15 \sim 16$ /Aug./2006)

Fig. 5 Time series of (a)wind speed at Adama and Kamaya, and (b)current velocity at K2 and K6 (19/Aug./2006 \sim 7/Sep./2006)

もかかわらず, K2の流速はK6と同程度か,しばしばK6よりも大きくなった。

これらの結果から,北浦で観測された湖流の変 動要因として風の影響が大きいことが示唆される が,ある地点の流向・流速が直近の風の時空間分 布では単純に説明できないことが示された。

3-3 釜谷沖の風と湖流との相関解析

北浦で観測される湖流の鉛直分布には全層に共 通の変動成分が含まれていることから、地点ご との流速 EW 成分および NS 成分の鉛直分布 16 組に対して各々 EOF 解析²⁾を適用することによ り、各地点の湖流鉛直分布と阿玉沖・釜谷沖の風 との相関関係を検討した。なお、共分散係数を 計算するにあたっては各層における時間平均か らの偏差を求めた。Table 1 に、算出された各々 の第1主成分 (Mode 1) の分散寄与率を示し た。Mode 1の分散寄与率は, K7の流速 NS 成 分のみ 40.7%とやや低いが、その他では 69.4~ 94.4%と極めて高くなっていた。この結果から、 各々の Mode 1 の主成分得点の時系列データが, どのような要因と相関が高いかを解析すれば、各 地点における湖流鉛直分布の主要な時間変動要因 が推定できることになる。

Table 2には、8地点流速2成分の Mode 1の 主成分得点と、阿玉沖風速2成分および釜谷沖 風速2成分との相関係数を示した。この結果、 ほとんどの Mode 1 について、釜谷沖の風との 間に高い相関が認められ、北浦における湖流の時 間変動の大部分が釜谷沖の風の時間変動で説明可 能であることが明らかとなった。風によって形成 される湖流の現れ方には、地形や他の要因の影響 により局所的な違いが生じると推察される。しか ながら、湖流の数値シミュレーションにおける主 要な変動エネルギーとして、釜谷沖の風のみを与 えても、十分な再現性が得られると考えられる。

但し、阿玉沖の風と釜谷沖の風との間には、も ともと相関関係がある(EW 成分:r=0.70, NS 成分:r=0.72)。このため、各地点の湖流鉛直分 布は阿玉沖の風によってもある程度の説明が可 能である。特に、北浦北部に位置するK1の流速 EW 成分および K2 の流速 NS 成分において、阿 玉沖の風の方が釜谷沖の風よりも僅かながら高い 相関が得られている。数値シミュレーションにお いて風の地域性を考慮することにより、再現性が 向上する可能性については、別途検討する必要が ある。

3-4 風分布の地域性を考慮した計算例

閉鎖水域で風により駆動させられた表層の流れ は、保存則に従う限り水平または鉛直方向に循環 流を形成せざるを得ない。このため、狭い水域で 短時間作用する弱い風よりも広い水域で長時間作 用する大きな風が全体の湖流を支配する可能性が 考えられる。ここでは、北浦の南部と北部におけ る風速の違いが、既に構築した北浦の流動解析シ ステム¹⁴⁾による数値シミュレーション結果に与 える影響を試算した。計算条件は、河川流入出 を 0 とし、北東風のみを外力とした。また、鉛 直渦動粘性係数 Av に用いる定数 κ を 0.6 とした。 Case 1 では全域に風速 8m s⁻¹ を与えた。Case 2 では K5 付近から南側全域を風速 8m s⁻¹ とし、 K5から K1 にかけて風速が4m s⁻¹ くらいまで徐々 に弱くなるように与え、北東風の場合に見られる

Table 1 Percent of variance contributed to EOF Mode 1

	K1		K1		K1 I		K2 K3		ŀ	4	K	15	K	.6	K7		K8	
	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS		
Mode 1 Percent of variance (%)	94.4	90.9	70.0	86.1	74.4	69.4	92.7	75.5	88.0	92.8	81.8	72.7	75.1	40.7	78.9	75.6		

Table 2 Correlation coefficient between time series of EOF Mode 1 and wind

		ŀ	K1	K2		K3		ŀ	ζ4	ŀ	K5	ŀ	ζ6	k	K 7	K	8
EOF Mode1		EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS
Adama	EW	0.767	LC	LC	0.708	0.673	LC	0.767	LC	0.755	LC	0.550	LC	LC	0.626	0.532	LC
Audilla	NS	LC*	0.725	0.656	LC	LC	0.707	LC	0.770	LC	0.767	LC	0.671	0.536	LC	LC	0.700
Kamaya	EW	0.725	LC	LC	0.671	0.676	LC	0.804	LC	0.825	LC	0.673	LC	0.547	0.602	0.589	LC
Kamaya	NS	LC	0.828	0.749	LC	LC	0.714	LC	0.868	LC	0.905	LC	0.837	0.800	LC	0.638	0.866
		* low	correlati	on (r <0	.5)												

Fig. 6 Vector plots of the current simulated by the model (a)uniform wind speed (b)non-uniform wind speed

南部と北部の風速の違いを表現した。計算は,流 向・流速が定常状態となるまで行った。

Fig.6 には、各々の計算によって得られた第1 層(水深0~50cm)の流速分布を示した。計算 結果では、風の重み付けの影響により、弱い風を 与えた北部でCase 2の流速がCase 1の流速よ りもやや小さくなっているが、流向に与える影響 は見られない。強い北東風が観測される時期の実 測値では、K2 で K6 よりも強い北向きの流れが 観測されているが、風速の違いのみを考慮した今 回の計算条件では、K2 における特徴的な流れの 再現性は向上しなかった。湖上風の観測結果から、 北東風は阿玉沖において東より、あるいは北より の風に偏向する可能性が考えられたが,南よりの 強い風はほとんど観測されておらず,風速と併せ て風向の地域性を考慮した場合でも,本解析モデ ルにおいて北向きの流れは再現されないと推察さ れる。

本解析モデルの冬季の計算結果は K2 でも十分 な再現性が得られている¹⁴⁾。計算結果と一致し ない K2 における北向きの流れは夏季にのみ観 測された。また,K2付近は狭く陸地が迫ってい る,水深変化が大きい,主要流入河川の流入部に も比較的近い、等の地形的な特徴を持っている。 このため、実測値と計算結果が異なる要因を明ら かにするためには,夏季の成層効果や密度流の影 響,微細地形の影響など,検討すべき課題は多く 残されている。北浦では夏季に水面に集積する Microcystis 属のブルームも確認されており¹⁵⁾, 数値シミュレーションにおける表層流の再現性向 上は重要な課題である。モデルの改良には、風分 布の考慮のほか、密度分布の計算やメッシュの細 分化など様々な方法が考えられるが、いずれも計 算負荷を大きくする。今後、詳細な現地観測によ る局所的な湖流の解明を進めるとともに、解析の 目的に応じた実用的・効果的なモデル高度化が必 要である。

4 まとめ

霞ケ浦における風分布と湖流との関係について 検討を行った。得られた知見は以下のようにまと められる。

- 西浦周辺の風は湖上で強く、周辺で弱い傾向 があるが、著しい風向の偏向は見られなかっ た。南北に細長い北浦では、水域の幅が広い 南部で比較的強い湖上風が観測されたのに対 し、幅の狭い北部では弱くやや偏向した湖上 風が観測された。
- 2) EOF 解析を用いた検討の結果,湖流の数値 シミュレーションにおける主要な変動エネル ギーとして,釜谷沖の風のみを与えても,十 分な再現性を得られる可能性が示された。
- 3)北東風のみを外力とし、北浦南部と北部の風速の違いを考慮した数値シミュレーションの結果では、夏季の湖流の再現性は改善されなかった。

電ケ浦周辺の気象観測データは限られており, 新たな観測を多数実施しない限り補間によって時 間的・空間的な湖上風の変化を捉えきることはで きない。また,空間スケールの大きい気象モデル から複雑な湖岸線を持つ霞ケ浦の湖上風を再現す るには流動モデル並みの解像度による風況計算が 必要になるが,その空間解像度には限界がある¹⁶⁾。 これらの現状と本研究成果を踏まえると,北浦湖 流の数値シミュレーションには釜谷沖の風を与え るのが実用的であると考えられる。今後の流動モ デルの改良は,解析目的に応じて実施される必要 がある。

謝 辞

本調査を実施するにあたり,きたうら広域漁業 協同組合および霞ヶ浦漁業協同組合連合会の関係 者各位に大変お世話になった。また,国土交通省 関東地方整備局霞ヶ浦河川事務所および(独)水 資源機構利根川下流域総合管理所からは貴重な観 測データを提供して頂いた。数値シミュレーショ ンによる検討に関しては,(株)パスコの矢沼隆氏 らのご尽力があった。ここに記して感謝の意を表 す。

なお、本研究の一部は文部科学省「特別電源所 在県科学技術振興事業補助金」の交付を受けて実 施した。

引用文献

- 村岡浩爾,福島武彦 (1981): 霞ヶ浦(西 浦)の湖流,国立公害研究所研究報告,19, 150pp.
- 小松伸行,石井裕一,本間隆満,渡邊圭司, 根岸正美(2008):EOF解析を用いた北浦 の湖流変動要因の検討,陸水学雑誌,69, 39-49.
- 田中修三,比企三蔵,小西浩之(1990): Landsatの捉えた霞ケ浦のアオコの拡がり と吹送流,日本リモートセンシング学会誌, 10,337-347.
- 4) 佐々木道也(1993):網生簀養殖漁場における低酸素水の発生と風の影響について、茨城県内水面水産試験場研究報告、29,57-80.
- 5) Endoh, S., M. Watanabe, H. Nagata,

F. Maruo, T. Kawae, C. Iguchi., and Y. Okumura (1995) : Wind fields over lake Biwa and their effect on water circulation., Japan Journal Limnology, 56, 269-278.

- 6) 鶴田泰士,石川忠晴(1999):小川原湖に おける風速分布の現地観測,水工学論文集, 43, 1043-1048.
- 2) 豊田政史,宮原一道,萩庭康光,寺沢和 晃,疋田真,降矢利勝,宮原裕一,富所五郎 (2006):諏訪湖における湖上風の非一様性 とそれが湖流形成に与える影響,水工学論文 集,50,1303-1308.
- Li, J., S. Liu, X. Yu (1999) : Numercial modeling of wind-induced currents in shallow lake., Environmental Hydraulics, 493-498.
- 9) 平山彰彦,和氣亜紀夫(1998):流況シミュレーションにおける水上風の補正,水工学論文集,42,703-708.
- 10)(財)道路環境研究所(2007):道路環境 影響評価の技術手法2巻2007改訂版, 464pp.
- 11)小松伸行,石井裕一(2006):冬季の北浦に おける湖流観測,茨城県霞ケ浦環境科学セン ター年報,1,114-121.
- 山口正隆,畑田佳男,田窪宏朗(1995):波 浪追算に基づく霞ヶ浦での波候の推定,自然 災害科学,14,235-245.
- 13)小松伸行,石井裕一,根岸正美(2007):鰐川の流量変動が北浦の流況に与える影響,第 34回土木学会関東支部技術研究発表会講演 要旨,II-095.
- 14)小松伸行,石井裕一(2007):北浦湖流の数 値シミュレーション,茨城県霞ケ浦環境科学 センター年報,2,111-121.
- 15)本間隆満,小松伸行,根岸正美,中村剛也, 朴虎東(2008):霞ヶ浦(西浦・北浦)にお ける *Microcystis* 属の形態種組成と栄養塩濃 度の関係,日本水産学会誌,74,189-198.
- 16)橋本篤,大澤輝夫,安田孝志(2005):複雑 地形上でのメソ気象モデル MM5の風況計算 精度と高解像度の限界に関する検討,日本風 工学会論文集,30,65-74.

霞ヶ浦(西浦・北浦)におけるユスリカ幼虫の水平分布と その季節変動に影響をおよぼす環境勾配

長谷川恒行¹,中里亮治¹,肥後麻貴子^{1,2},石井裕一

Effects of environmental factors on the horizontal distributions and seasonal fluctuations of

chironomid larvae in Lakes Nishiura and Kitaura

Tsuneyuki HASEGAWA¹, Ryoji NAKAZATO1, Makiko HIGO^{1,2} and Yuichi ISHII

キーワード:ユスリカ幼虫、水平分布、季節変動、環境勾配

1 はじめに

ユスリカはハエ目ユスリカ科 (Diptera: Chironomidae) に属する昆虫の総称である。こ のユスリカ科は非常に多くの種から構成されてお り,世界では約 15,000 種,日本ではおよそ 1,700 種が知られている。

ユスリカ幼虫はこのような種の多様性ゆえに, 湖,川,池,湿地などあらゆるタイプの水域に分 布し,また一部の種類は海岸の岩場や陸域の土壌 中にも生息している。そのため,とくに淡水環境 においては大型無脊椎動物の主要構成員の一つと なり,また環境指標生物としても重要な生物群と して認識されている。

湖沼の堆積物中や,石の表面,水草等に生息す るユスリカ幼虫は,植物プランクトン由来の沈降 有機物や付着藻類を主要な食物源として成長す る。その一方で,ユスリカの幼虫や蛹,ときには 成虫までもが魚類や肉食性の昆虫類などの捕食者 に餌資源として利用されている。また,ユスリカ 幼虫は摂餌や排出活動を通じて,営巣基質とその 直上水との間で酸素や NH₄⁺ および PO₄³ 等の栄 養塩類の交換を促進する役割を担っている。

ユスリカ幼虫は底泥中や,水生植物,石等の基 質の表面で蛹となる。その蛹は水面に浮上し成虫 になる。これら成虫の多くは湖周辺の岸辺から陸 域に飛んでいくため,ユスリカの羽化は有機物を 湖から除去する結果となる。これらのことから, ユスリカが湖沼生態系内の物質循環に重要な役割 を果たしていることが理解できる。

近年, 霞ヶ浦(西浦・北浦)の底泥に生息する ユスリカ幼虫の密度が大幅に減少していることが 指摘されている。さらに、西浦では 1980 年代後 半より、その種組成が変化しており、アカムシユ スリカ Propsilocerus akamusi 幼虫が激減する一方 で、モンユスリカ亜科の幼虫(特にスギヤマヒラ アシユスリカ Clinotanypus sugiyamai)の割合が 増加していることが報告されている¹⁾。また、茨 城大学広域水圏センターの北浦定期観測グループ が 2003 年度から実施している北浦のモニタリン グやユスリカ成虫のライトトラップ調査では、こ れまで霞ヶ浦では採集記録のなかったオオミドリ ユスリカ Lipiniella moderata 幼虫と成虫の大量発 生も確認されている。

これまで霞ヶ浦の食物網や物質循環におけるユ スリカの寄与はアカムシユスリカが優占種であった 1980年代の研究結果をもとに試算されてきた²⁾³⁾。 しかし,前述のような近年の霞ヶ浦で見られてい るユスリカ幼虫密度の減少や種組成の大きな変化 を考慮すれば,現在の霞ヶ浦の食物網や物質循環 におけるユスリカ類の役割は,これまで知られて いるものとは大きく異なっていることが予想され る。

過去のデータと比較しながら現在や今後の霞ヶ 浦におけるユスリカの役割を評価・予測するため には,過去から現在まで霞ヶ浦のユスリカ群集の 変遷を理解した上で,今後のユスリカ群集組成や 生物量の変化過程を追跡し,さらにはこれらの変 化をもたらした,あるいはもたらすであろう要因 を解明することが必要不可欠である。しかしなが ら,西浦においては,1990年代以降,ユスリカ 群集の変遷を種レベルで議論できるデータはな い。また北浦では茨城大学広域水圏センターが 2003年度より釜谷沖から湖岸に引いたライン上 の4~5箇所の定点でユスリカ群集を中心とし た底生動物の調査を実施しているものの,北浦全

¹茨城大学広域水圏環境科学教育研究センター

²現所属:品川区立小中一貫校伊藤学園

域の調査はなされていない。

そこで本研究では,現在の北浦および西浦にお ける広範囲の調査から,両湖におけるユスリカ幼 虫の水平分布とその季節変動を明らかにし,それ に影響をおよぼす要因を解析することを目的とし た。

2 調査地と方法

調査地点は北浦では深底帯に11地点(S1か らS11), 釜谷沖のS7(St.1)から茨城大学広域 水圏環境科学教育研究センターの船着き場に向か うライン上の3地点(沖からSt.A, St.2, St.3), 西浦では4地点(N1, N2, N4, N7)の計18 地点を調査地点とした(Fig.1-a, b)。北浦釜谷 沖からのライン上の4地点は原則2週間に1度, その他の地点は原則月1回の頻度で調査をした。 環境要因は湖面表層と湖底直上の溶存酸素量と水 温をDOメーター(YSI 550A, 一部YSI 550) で測定した。これら以外に,2007年12月に北 浦の14地点において強熱減量および含砂率測定 用の試料として,堆積物を採集した。

底生動物の採集はエクマンバージ採泥器(採泥 面積 15×15cm²)を用いた。底生動物のサンプ ルサイズは 1 地点あたり 3 ないし 5 回である(西 浦の 4 地点および北浦の St.A, St.2, St.3 は 3 回, それ以外の地点は 5 回)。採泥器で採取した堆積 物はサーバーネット(メッシュサイズ 0.344mm) で篩い,残った残渣を湖水でビニル袋に流し入れ, クーラーボックスに入れて持ち帰った。

3 結果

3-1 ユスリカ幼虫の水平分布

調査期間を通して最も多くのユスリカ種が採集 された定点は、北浦ではS1で12分類群が、ま た西浦ではN1で8分類群が採集された。最も 少なかったのは、北浦ではS7とS8で5分類群、 西浦はN7で1分類群が採集された。

西浦および北浦の全地点においてオオユスリ カ *Chironomus plumosus* 幼虫が分布し,ほとん どの地点で優占種となった。特に S1 と S2 は 4 月 20 日の調査でそれぞれ 2,560±556 ind/m², 3,893±1,172 ind/m² と 高密度であった。カ スリモンユスリカ *Tanypus punctipennis* 幼虫は

Fig.1-a Location of sampling sites at Lake Kitaura. Arabic numerals in parentheses represent water depth.

Fig.1-b Location of sampling sites at Lakes Nishiura. Arabic numerals in parentheses represent water depth.

St.3, N4およびN7を除いた全地点で採集された。 カユスリカ属の一種 *Procladius* spp. は北浦の全 地点と西浦のN1で採集された。この他にもヒラ アシユスリカ属の一種 *Clinotanypus* sp., コガタ ユスリカ属の一種 *Microchironomus* sp., アカム シユスリカなどが多くの地点で採集された。

		\$1	S 2	\$3	S 4	S 5	S6	\$ 7	S8	S 9	510	\$11	N1	N2	N 4	N7	St.A	St.2	St.3
Tanypodinae	Clinotanypussp.	0	\triangle	\bigcirc	\bigtriangleup	\bigtriangleup	\triangle	\bigtriangleup	\bigtriangleup	\bigtriangleup	\triangle		\bigtriangleup				\triangle	\triangle	
	Procladius spp.*	0	\triangle	Δ	Δ	\triangle	Δ	\triangle	\triangle	\triangle	\triangle	0	$ \triangle $				Δ	0	Δ
	Tanypus punctipennis*	0	0	۲	\triangle	0	0	0	0	0	0	0	0	\triangle			0	\triangle	
	Tanypus (B)	$-\Delta$																	
Orthocladiinae	Propsilocerus akamusi	0	0	0	0	0	0	\triangle	0	0	0	0	0	\triangle	\triangle				
	Hydrobaenus sp.		Δ																Δ
Chironominae	Chironomus plumosus	٠	•	0	0	0	0	0	0	0	0	0	٠	0	\triangle	Δ	•	•	0
	Cladopelma sp.*	$-\Delta$																Δ	
	Cladotanytarsus sp.*																		0
	Cryptochironomus sp.*	\simeq																Δ	\triangle
	Glyptotendipes sp.*	$ \Delta $								\bigtriangleup								\triangle	0
	Harnischia sp.												\triangle						
	Lipiniella moderata*		\triangle	Δ								0						0	•
	Microchironomus sp.		\triangle	\triangle	\triangle	\triangle	\bigtriangleup			0	\triangle	\triangle	\bigtriangleup				\triangle	Ō	\triangle
	Paratendipes sp.?	$ \Delta $																	
	Polypedilum spp.*	0										\triangle	\triangle					0	0
	Tanytarsus sp.*	Δ																\triangle	\triangle

Table 1 List of chironomid larvae collected in this study.

 \bullet :Maximum density over 1000 ind/m², \odot :Maximum density 500 – 1000 ind/m², \bigcirc :Maximum density 100 – 500 ind/m², \triangle :Maximum density under 100 ind/m².

* Asterisks mean the species had collected on the shore of Lake Nishiura by Oikawa(2008).

3-2 ユスリカ幼虫の季節変動

本調査で生息が確認されたユスリカ幼虫を Table 1 に示す。北浦および西浦のほとんどの 地点でオオユスリカ幼虫の個体数は5~6月 頃に大きなピークを示した。北浦のカスリモン ユスリカ幼虫は7~9月以降に密度の増加が 見られた。一方西浦の N1 では 10 月以降は密 度の低下が見られ、N2では10月以降は採集 されなかった。アカムシユスリカは北浦におい て10月末以降に採集されたが、西浦では1月 以降に採集された (Fig.2)。Procladius spp. は 北浦のほとんどの定点で採集され、特にS1や S11 で夏季に幼虫密度が高かった。Clinotanypus sp. は S2, S3 で他の地点に比べ密度が高かっ た。Microchironomus sp. は S1 および S9 で初夏 に、S11では初夏と秋以降に高密度に分布してい た。また, Microchironomus sp. の幼虫は北浦の 岸-沖のライン上の定点である亜沿岸帯 St.2 で 秋以降に密度が急増した。オオミドリユスリカ は北浦のライン調査では沿岸の St.3 で優占し,6 月25日の調査でピーク(2,919 ind/m²)を示 した。北浦の深底帯では S2, S3 および S11 で 採集され, S11 は比較的高密度に分布していた。 一方, Procladius spp., Clinotanypus sp. および Microchironomus sp. は西浦では N1 でのみ採集 された (Table 1)。

3-3 オオユスリカおよびカスリモンユスリカ密 度と環境要因の関係

ユスリカ幼虫の密度が高かった北浦において, 採集されたオオユスリカ幼虫とカスリモンユスリ カ幼虫の2種について,いくつかの環境要因との 関係を検討した。対象とした北浦調査地点の環境 要因をTable 2に示す。 また,これら環境因 子とオオユスリカ幼虫とカスリモンユスリカ幼虫 との関係を Spearman の順位相関係数を用いて 解析した。

解析結果を Table 3 に示す。オオユスリカ幼 虫の場合は、幼虫密度と岸から調査地点までの距 離および底層(底泥直上)の溶存酸素量との間に 負の相関が、逆に水温との間には正の相関が見ら れた。カスリモンユスリカ幼虫の場合は、水深お よび水温との間に負の相関が、また底層の溶存酸 素量との間に正の相関が見られた。

4 考察

4-1 ユスリカ幼虫の水平分布について

採集されたユスリカの分類群数が多かった地点 は、他の地点と比べて岸と調査地点間の距離が短 く、分類群数が少なかった地点はこの距離が長 い傾向が見られた。また、北浦のS1で採集され た12分類群のうち5分類群が西浦の石川地区の 沿岸砂質帯⁴⁾や北浦における沿岸-沖ライン調

Fig.2 Seasonal changes in population density of chironomid larvae in each sampling point during March 2007 – March 2008.

Table 2 Characteristics of sampling sites.

	51	52	\$3	54	S 5	S6	S 7	58	S 9	\$10	S11
Sand content (%)	18.3	5.3	5.7	3.1	2.1	1.3	3.1	5.0	44.3	49.5	87.4
Ignition loss(%)	16.2	17.2	19.5	19.2	18.5	18.5	17.2	15.4	6.5	6.3	3.2
Distance (m)*	250	300	500	700	500	1000	1600	1000	800	600	300
Mean DO(mg/L)	8.5	9.4	8.6	8.0	8.1	8.3	7.3	8.1	9.0	8.4	8.0
(MinMax.)	(4.3-12.9)	(3.5-14.0)	(2.1-12.7)	(2.7-12.8)	(2.6-13.2)	(2.1-12.9)	(0.7-13.3)	(2.9-13.3)	(3.5-14.0)	(3.3-12.7)	(1.4-12.0)
Mean WT (°C)	15.8	16.3	16.5	16.8	16.8	16.8	16.7	16.6	165	16.1	17.4
(MinMax .)	(6.3-24.3)	(5.6-26.9)	(5.7-27.7)	(5.5-28.3)	(5.4-28.1)	(5.4-28.5)	(5.5-29.8)	(5.4-27.8)	(5.4-27.3)	(5.4-27.4)	(5.6-27.7)

* Distances from the lake shore to sampling sites.

Table 3Relationships between environmental parameters and chironomid larvaldensities in the profundal zone of Lake Kitaura.

	water depth	distance ¹	ignition loss	sand in sediment (%)	dissolved oxygen	water temperature
Chironomus plumosus	-0.13	-0.83*	0.25	0.12	- 0.46*	0.40*
Tanypus punctipennis	- 0.70*	-0.28	-0.37	0.54	0.29*	-0.22*
1						

¹ Distances from the lake shore to study points.

* *p*<0.05.

査における St.2 や St.3 でも採集され,別の5分 類群は S7 や S8 のような軟泥部から採集された ものと同じであった (Table 1)。Lods-Crozet & Lachavanne (1994) によればジュネーブ湖のユ スリカ幼虫の水深別の分布は亜沿岸帯と深底帯の 間に共通する種が多く,そのためユスリカ幼虫に とって亜沿岸帯と深底帯の境界はそれほど明確な ものではないとされている⁵⁾。従って S1 や N1 でユスリカの多様性が高い理由として,湖岸と調 査地点間の距離が短いため,深底帯に分布するユ スリカ種も生息可能であるためと考えられる。

4-2 ユスリカ幼虫の分布と季節変動に影響をお よぼす要因について

オオユスリカ幼虫が岸から調査地点の距離との 間に負の相関関係が見られ、岸から近い地点のほ うがオオユスリカ幼虫の密度が高い傾向が見られ た。これは岸から遠い地点のほうが、オオユスリ カ幼虫が移動する際に魚類などによって捕食され る可能性が高くなるためかもしれない。また、岸 から遠い距離にある調査地点の場合、その地点よ りも岸に近い距離にある軟泥質の底質環境の場所 に当該幼虫が定着してしまうため、岸から遠い距 離にある深底帯の中央部に分布する個体が少なく

Fig.3 Seasonal changes in the dissolved oxygen concentration at mud-water interface, and densities of T. punctipennis larva at S7 (St.1) and St.A of Lake Kitaura in 2007.

なるのかもしれない。

オオユスリカ幼虫と湖底底層の溶存酸素量との 間には負の相関関係見られた。オオユスリカ幼虫 は貧酸素環境に耐性があることが知られており⁶⁾, 今回の調査でも溶存酸素量が最も低い値を示した 6月末に比較的高密度で分布しており,かつ溶存 酸素量が高い冬季にあまり採集されなかったため に,溶存酸素量と負の相関を示したと考えられる。 ただし,今回はオオユスリカ幼虫の採集にエクマ ンバージ採泥器を用いたため,底泥のより深いと ころまで潜ることができるオオユスリカ幼虫を過 小評価している可能性が高い。今後はコアサンプ ラーなどのより深い堆積物を採集できる器具を用 いて再検討する必要がある。

また、オオユスリカ幼虫と堆積物の関係につい て、オオユスリカ幼虫は砂質堆積物上で飼育した 場合、泥質堆積物で飼育した場合よりも死亡率が 高まることや正常な営巣活動ができなくなること が確かめられている⁷⁾。従って、S9、S10 および S11 でオオユスリカ幼虫の密度が低かった理由は 含砂率が高いためかもしれない。

カスリモンユスリカ幼虫の密度と溶存酸素量と の間に見られた正の相関は、カスリモンユスリカ 幼虫が貧酸素環境では生息することが難しいこと を示唆している。St.1 (S7)からSt.3のライン 上で行った調査では8月頃まではSt.1のカスリ モンユスリカ幼虫の密度は低い値で推移したが, 湖底の溶存酸素量が増加し始める9月以降には 密度の増加が見られた。また、6月末頃にはカス リモンユスリカ幼虫はやや沿岸寄りの St.A に高 密度に分布していた(Fig.3)。湖底の溶存酸素量 が上昇する秋季以降に深底帯でカスリモンユスリ カ幼虫が増加することは北浦の水平調査において も確認されている (Fig.2)。また, S1 や S2 のよ うな極端な貧酸素環境が見られなかった地点で は、他の地点では密度が低い夏季であってもカス リモンユスリカ幼虫の密度が高かった。このこと からもカスリモンユスリカ幼虫の密度の変動は溶 存酸素量と関係があると思われる。

なお,カスリモンユスリカ幼虫と含砂率の間に 相関関係は見られなかったが,沿岸砂質帯の St.2 や St.3 ではほとんどカスリモンユスリカが分布 していなかった。このことから,カスリモンユス リカ幼虫は,生息場として砂質の底質環境を好ま ないのかもしれない。

5 まとめ

 ユスリカ幼虫の密度および種組成はごく近 年においても変化しており、今調査でも前 年度の調査までほとんど採集されなかったカ スリモンユスリカ幼虫の密度の増加が確認さ れた。また、ユスリカ幼虫の分布と季節変動 に影響をおよぼす要因はユスリカ種や季節に よって異なっていた。

- 2) 霞ヶ浦の西浦と北浦におけるユスリカ幼虫の 個体数密度は西浦よりも北浦の方が高い傾向 が見られた。また、西浦は湖心と土浦入りが 特にユスリカ幼虫の密度が低かった。
- 3)オオユスリカ幼虫は岸から調査地点までの距離との間に負の相関を、底泥直上の溶存酸素量との間に負の相関を示した。カスリモンユスリカ幼虫は水深との間に負の相関を、底泥直上の溶存酸素量との間に正の相関を示した。

謝 辞

本調査におけるサンプリングにあたっては茨城 大学広域水圏環境科学教育研究センターの大学院 生・4年次生の多大なるご協力をいただいた。こ の場を借りてお礼申し上げる。

引用文献

- 中里亮治, 土谷卓, 村松充, 肥後麻貴子, 櫻 井秀明, 佐治あずみ, 納谷友規 (2005):北 浦におけるユスリカ幼虫の水平分布と個体 数密度の長期変遷, 陸水学雑誌, 66, 165-180.
- 2) 岩熊敏夫(1986): 霞ヶ浦の生物生産,水質 汚濁研究,9,7,406-411.
- 3) 岩熊敏夫(1990):水源水域における底生動 物の水質に及ぼす影響,公害と対策 vol.26 No.3 p210-216
- 4) 及川康子(2008): 霞ヶ浦(西浦)における 湖岸植生帯の再生がユスリカ幼虫の分布と動 態に及ぼす影響 –野外調査と水草移植実験 からの解析–,茨城大学大学院理工学研究科 地球生命環境科学専攻 修士論文.
- 5) Brigitte Lods-Crozet & Jean-Bernard Lachavanne (1994) : Change in the chironomid communities in Lake Geneva in relation with eutrophication, over aperiod of 60 years, Arch.Hydrobiol., 130, 453-471.
- Frank, C. (1983) : Ecology, production and anaerobic metabolism of Chironomus plumosus L. larvae in a shallow lake II . Anaerobic metabolism, Arch. Hydrobiol.,

96, 354-362.

7) 肥後麻貴子(2004):北浦沿岸および沖帯に おけるユスリカ類の動態,茨城大学大学院理 工学研究科地球生命環境科学専攻 修士論 文.

集水域の土地利用状況による霞ケ浦流入河川の分類とその特徴

石井裕一,北村立実,渡邊圭司,小松伸行

Classification of rivers flown into Lake Kasumigaura based on land use in their watershed Yuichi ISHII, Tatsumi KITAMURA, Keiji WATANABE and Nobuyuki KOMATS キーロード: 注入河川 集水域 土地利用状況 地理情報システム

キーワード:流入河川,集水域,土地利用状況,地理情報システム

1 はじめに

湖沼や内湾等の閉鎖性水域はその集水域の土地 利用と開発により流入汚濁負荷量が増加し水質汚 濁,富栄養化が進行している。集水域内で発生し た汚濁物質は,集水域と閉鎖性水域を結ぶ主要な 経路である河川から湖沼へと流入することから, 河川からの流入負荷は,その集水域の規模¹⁾や 土地利用形態²⁾の影響を受けている。閉鎖性水 域における水質の改善対策として下水道等の整 備,合併浄化槽の導入,工場・事業排水に対する 規制等を行ってきたが,依然として湖沼の環境基 準達成率は低いままである。その原因として森林, 農地,市街地といった面源負荷の寄与が指摘され ている^{3~7)}。また集水域内で営まれている畜産 業などの点源からの負荷も湖内の水質汚濁の一因 として挙げられている^{8~11)}。

我国の代表的な富栄養湖の1つである霞ケ浦 の集水域では、下水の高度処理など様々な水質汚 濁対策がなされているが、湖内の水質はそれほど 改善されていない。一方で、霞ケ浦へ流入する河 川の水質は、多くの河川で COD や BOD 濃度は 改善する傾向にあるものの、一部の河川では窒素 が上昇傾向を示すなど、新たな汚濁現象が確認さ れており¹²⁾、流入河川の汚濁要因の抽出と的確 な負荷削減対策が求められている¹³⁾。

本研究では、河川流入負荷削減対策の一助と して、地理情報システム(GIS:Geographic Information System)を活用し、電ケ浦流入河川 を集水域の土地利用状況により分類し、各河川の 集水域および河川水質の特徴について検討した。

2 方法

2.1 調查地概要

霞ケ浦は茨城県南部に位置する富栄養湖であ り,西浦,北浦および常陸利根川から構成される 総面積 219.9km2,湖岸線延長 252km の湖沼で

ある。霞ケ浦の大部分を占める西浦(171.5km²) および北浦(36.2km²)へ流入する河川数は、そ れぞれ 29 河川および 22 河川であり, 常陸利根 川へは5河川が流入し、合計56河川が霞ケ浦の 流入河川となっている。Fig.1 に示した霞ケ浦の 集水域面積は1937km²である。本研究では西浦 および北浦への流入河川のうち主要な20河川を 調査対象とした。そのうち西浦への流入河川は 12 河川 (R1:川尻川, R2:一ノ瀬川, R3:山王川, R4: 園部川, R5: 新利根川, R6: 小野川, R7: 高橋川, R8:清明川, R9:花室川, R10:新川, R11:桜川, 12:恋瀬川), また北浦への流入河 川は8河川(R13:巴川, R14:鉾田川, R15: 二重作大排水路, R16:武田川, R17:山田川, R18:大円寺川, R19:蔵川, R20:雁通川) で ある。本研究で対象とした 20 河川の集水域の合 計面積は1400km²であり、霞ケ浦の全集水域面 積のおよそ 72%を占めている。

2.2 河川集水域面積,土地利用割合,人口およ び家畜頭数の見積り

各調査河川の集水域情報の整理,見積りはGIS ソフト (SIS Map Modeller ver.6.2)を利用して 行った^{14,15)}。本研究で用いたGISモデルは,霞 ケ浦集水域を500m×500mのメッシュに分割し ている。各河川の集水域面積は国土交通省関東地 方整備局霞ヶ浦河川事務所より提供を受けた旧建 設省作成「霞ケ浦・常陸利根川集水域図」をモデ ルに取り込み算出した。また,各河川集水域内に おける土地利用割合は国土地理院より提供を受 けた「集水域自然環境調査データ (2004 年版)」 に基づき算出した。集水域内人口は「平成16 年 度茨城の人口 (茨城県常住人口調査結果報告書) (http://www.pref.ibaraki.jp/tokei /betu/jinko/ nenpou/jinko16/index.htm)」および「平成16 年度栃木県の人口 (栃木県毎月人口調査報告書)

Fig.1 Location of Kasumigaura watershed and studied rivers into lakes Nishiura and Kitaura with sampling points.

(http://www.pref.tochigi.jp/pref/toukei/toukei/ pop u3.html)」を用いた。これらの人口データ はメッシュ毎の集計がなされていないため、「平 成 12 年度地域メッシュ統計¹⁶⁾」により各メッ シュの重み付けをし、分配した。また集水域内 家畜頭数は「2000 年世界農林業センサス¹⁷⁾」お よび「茨城県農林水産統計年報¹⁸⁾」をそれぞれ GIS ソフトに取込み、人口と同様の手法により各 メッシュに分配し見積った。

2.3 河川の分類

GIS により見積もった各調査河川の集水域面 積,土地利用割合,人口密度,畜牛頭数密度,養 豚飼養頭数密度および河川密度データを用い,ク ラスター解析(Ward法,平方ユークリッド距離) により各調査河川を分類した。解析には統計解析 ソフト(SPSS, ver.13.0 J)を用い,各パラメー タの最大値を1としデータを標準化し実効した。

2.4 流量調査および水質分析

各調査河川において、2005年7月から2006 年3月までの期間に1回/月の頻度で合計9回 の平水時水質・流量調査を実施した。毎回の調査 は Fig.1 に示した各調査河川の最下流の環境基準 点で全20河川を同日中に実施し、流速計測(東 邦電探, TK-105X), 川幅・水深の計測, 河川 表層水の採水および透視度の計測を行った。採 取した河川水サンプルは実験室に搬入し、水質 分析に供した。河川水サンプルはガラス繊維ろ 紙 (Whatman, GF/B) を用い直ちにろ過を行 い,ろ液中の硝酸態窒素 (NO₃-N),リン酸態リ ン (PO₄-P) および溶存態有機炭素 (DOC) 濃 度を測定した。NO₃-N および PO₄-P の濃度測定 は連続流通式自動分析装置 (BRAN+LUEBBE, AACS-II), DOC の濃度測定は全有機炭素分析装 置 (SHIMADZU, TOC-V_{CSN}) を用いた。

3 結果および考察

3.1 各調査河川集水域の特徴

各調査河川における河川延長,集水域面積およ び集水域内の人口および家畜頭数を Tablel に示 す。河川延長が長くかつ集水域面積の大きな大規 模河川は西浦集水域に集中しており(R5, R6, R11 および R12),北浦流入河川では R13 のみ が集水域面積が100km²以上の河川であった。こ うした大規模河川集水域では集水域内の人口や畜 牛数も多くなっていたが、養豚数については河川 の規模によらず比較的小規模な河川でも多いこと が分かった。養豚飼養頭数密度(head km⁻²)は 西浦流入河川集水域では0~372 head km⁻²の 範囲でそれほど大きな値ではなかったが、北浦 流入河川では R14 で 1270 head km⁻², R15 で 1162 head km⁻², R19 で 2268 head km⁻² となり、 比較的小規模な集水域内で高密度に飼育されてい る河川が多いことが解った。また、河川密度を算 出すると、R3 がおよそ 0.9km km⁻² と突出して いるが、その他の河川は概ね 0.2 ~ 0.5 km km⁻² の範囲であった。

各調査河川の集水域内の土地利用割合は Fig.2 に示すとおりであり,R3,R9 および R10 集水 域は比較的市街地の占める割合が多くなっていた (42.0 ~ 52.2%)。また,R5 は水田の占める割 合が最も大きく(64.1%),全調査河川のなかで 最も水田の割合が高い集水域を有する河川であっ た。その他の河川集水域の土地利用割合は概ね同 様の傾向であったが,西浦流入河川(R1~12) と北浦流入河川(R13~20)で比較してみると, 市街地面積の占める割合の平均値は R1~12で は 24.6%,R13~20では 10.6%であり,北浦 集水域の方が西浦集水域に比べ市街地化がそれほ ど進行していないことがわかる。また,北浦集水 域では,相対的に畑地および森林地の占める割合 が高い河川が多くなっている。

3.2 集水域土地利用状況に基づく調査河川の分類

クラスター解析結果(デンドログラム)を Fig.3 に示す。図中の破線で示したように,ディ スタンス5で区切るとCluster 1 (C1)から Cluster 6 (C6)までの6つのクラスター(河川群) に分類された。それぞれのクラスターの特徴を以

Table 1Characteristics of studied rives andtheir watershed.

Martin	D:	Length	Catchment area	Population	Number of	of livestock
Number	River	(km)	(km ²)	(person)	Cattle	Pig
R1	Kawajiri	3.0	9.1	1771	13	884
R2	Ichinose	14.0	30.0	16957	1912	4699
R3	Sannou	10.5	12.0	23895	0	1581
R4	Sonobe	22.4	78.8	41599	2459	29365
R5	Shintone	32.1	181.8	122775	1945	2026
R6	Ono	56.8	176.7	166206	521	7616
R7	Takahashi	8.2	14.9	10725	114	389
R8	Seimei	11.3	25.0	16508	258	0
R9	Hanamuro	16.2	34.1	77913	299	250
R10	Shin	2.1	8.2	19553	0	120
R11	Sakura	59.0	351.8	132550	3804	11157
R12	Koise	44.1	212.1	52112	3238	33992
R13	Tomoe	33.1	130.5	38274	4983	42462
R14	Hokota	14.7	53.6	16565	560	68028
R15	Futaezaku	3.4	6.8	1182	200	7903
R16	Takeda	8.8	19.7	4134	128	313
R17	Yamada	8.3	21.7	4051	0	21022
R18	Daienji	3.8	7.3	1695	42	5261
R19	Kura	5.3	16.7	3364	247	37961
R20	Gantsu	2.8	8.5	1593	28	1490

Fig.2 Land use rate in the watershed of studied rivers.

下に記す。

<u>Cluster 1 : (R2, R4, R13)</u>

このクラスターには R2, R4 および R13 の3 河川が分類された。これらの河川集水域面積は $30 \sim 130 \text{km}^2$ であり中規模な河川であると言え る。畜牛頭数密度はおよそ $31 \sim 64 \text{ head km}^2$ と他の河川よりも高密度であり、養豚飼養頭数密 度は $157 \sim 372 \text{ head km}^2$ である。また畑地面

Fig.3 Dendrogram of cluster analysis using the ward method for river classification.

積割合が3河川平均で39%(34~45%)と比較的大きいことが特徴である。

<u>Cluster 2 : (R14, R15, R16, R17, R19)</u>

集水域面積が7~54km²の範囲であり,小~ 中規模程度の河川グループである。畑地面積の 占める割合が5河川平均で38% (25~48%) と高く,また養豚飼養頭数密度も1000~2200 head km⁻²と非常に高い。R16に関しては養豚飼 養頭数密度は16 head km⁻²と低密度であるが, 畑地面積割合は他の河川と同様に高い割合であ る。

<u>Cluster 3 : (R1, R7, R8, R18, R20)</u>

比較的小規模な河川グループで,集水域面積は 7~25km²の範囲である。Cluster 2 と比べて, 畑地面積割合(5河川平均25%)および養豚飼 養頭数密度(5河川平均205 head km⁻²)は,共 に有意に小さい値である(いずれもp<0.05)。

<u>Cluster 4 : (R6, R11, R12)</u>

このクラスターは大規模河川のグループであ る。各河川の集水域面積がおよそ170~350km² と広大であり、また河川延長や人口も他の河川よ り高い値を示している。

$\underline{\text{Cluster 5: (R5)}}$

R5 (新利根川)のみが分類された。クラスター 4 の河川群と同様に大規模な河川であるが,集水 域の土地利用割合の中でも水田の占める割合が高 いことから (64%),広大な水田地帯を流下する 河川であると考えられる。

<u>Cluster 6 : (R3, R9, R10)</u>

これらの河川はいわゆる都市河川である。集水 域内の市街地面積割合が高く(42~52%),そ れに伴い人口密度(3河川平均:2217 person km⁻²)が他の河川集水域(残17河川平均:394 person km⁻²)に比べ,およそ 5.6 倍程度高くなっ ている。

3.3 調査河川水質の経月変化の特徴とクラス ター間の比較

6つのクラスターに分類された河川群の NO₃-N, PO₄-P および DOC 濃度の経月変化を Fig.4 に示す。図には各クラスターに分類され た河川水質の平均値を示した。また、各クラス ターの特徴を Table 2 に示す。NO₃-N 濃度は, Cluster 1 および Cluster 2 で調査期間を通して 比較的高濃度であり、それぞれ 3.47 ~ 6.24 mg L^{-1} , 4.91 ~ 6.71 mg L^{-1} の範囲で変動していた。 Cluster 3, Cluster 4 および Cluster 6 はほぼ同 程度の値であり、0.90~2.87 mg L¹の範囲で あった。最も低濃度であったのは Cluster 5 であ り, 0.11~1.70 mg L¹の範囲で変動していた。 NO₃-N 濃度が高濃度であった Cluster 1 および Cluster 2 は共に集水域内の畑地面積割合,養豚 飼養頭数密度が高いことが特徴である。畑地³⁾ や養豚地域^{8~10)}からのNO₃-Nの流出の可能性 は既往の研究でも報告されており、こうした地 域からの流出水が河川水中のNO₃-N濃度に影 響しているものと考えられる。Cluster 4 および Cluster 6 が比較的 NO₃-N 濃度が低濃度であった ことから、集水域内の人口や市街地は河川水中の NO₃-N 濃度にそれほど寄与していないものと推 察される。また、Cluster 5 も、NO₃-N 濃度が低 濃度であることから、水田も河川水中のNO₃-N 濃度へ及ぼす影響は小さいものと考えられる。

 PO_4 -P 濃度は、Cluster 6 が比較的高い値であ り (0.053 ~ 0.275 mg L¹)、12 月以降の低水温 期にその濃度は上昇していた。Cluster 6 は都市 河川グループであることから、市街地からの排水、 人間活動由来の排水の河川水中 PO₄-P 濃度への 寄与が示唆される。Cluster 6 に次いで高濃度で あったのは Cluster 3 (0.041 ~ 0.129 mg L¹) および Cluster 1 (0.025 ~ 0.108 mg L¹) であっ

Fig.4 Monthly change of water quality of studied rivers (average of each cluster).

Table 2	Characteristics	of	clusters.
	Characteristics	01	ciusiers.

gion
region

た。Cluster 2, Cluster 4 および Cluster 5 はい ずれも調査期間を通して低濃度であった(それぞ れ 0.013 ~ 0.034, 0.008 ~ 0.037 および 0.002 ~ 0.022 mg L⁻¹)。これらのクラスターでは明確 な季節変化は読み取れなかった。このことから, 低水温期の PO4-P 濃度上昇は都市河川(Cluster 6) 固有の現象であると推察される。

DOC 濃度は Cluster 5 が調査期間を通して最 も高い濃度を示していた(3.36 ~ 5.34 mg L⁻¹)。 その他のクラスターは概ね同程度の範囲(1.11 ~ 3.52 mg L⁻¹) で濃度は変化していた。Cluster 5(R5)は集水域内の水田面積が占める割合が高 い河川であることから、河川水中の DOC 濃度と の関連が示唆される。また多くのクラスターで調 査期間を通して DOC 濃度が減少傾向を示したの に対し、Cluster 6 のみが 11 月から DOC 濃度が 上昇していた。Cluster 6 は都市河川であること から、市街地の特性あるいは高い人口密度に起因 する濃度上昇であると推測される。

まとめ 4

西浦および北浦への主要な流入河川 20 河川を 対象とし、各河川の集水域の土地利用状況に基づ き河川の分類を行い、河川水質の特徴を検討した 結果、霞ケ浦流入河川はその集水域の土地利用 状況の特徴から、Cluster 1:畑地・畜牛地帯流 下河川(中規模),Cluster 2:畑地・養豚地帯流 下河川 (小・中規模), Cluster 3:小規模河川, Cluster 4: 大規模河川, Cluster 5: 水田地帯流 下河川, Cluster 6:都市河川の6つのグループ に分類された。クラスター毎に NO₃-N, PO₄-P および DOC 濃度の変動範囲・傾向が異なること が明らかとなり、Cluster 1 および Cluster 2 は NO₃-N が高濃度, Cluster 6 は PO₄-P が高濃度, Cluster 5 は DOC が高濃度であるなど、それぞ れクラスターに分類された河川群の水質の特徴が 整理された。

謝 辞

本研究は文部科学省から「特別電源所在県科学 技術振興事業補助金」の交付を受けて実施された。 ここに記し謝意を表する。

引用文献

- 1) Smith S.V., Swaney D.P., Buddemeier R.W., Scarsbrook M.R., Weatherhead M.A., Humborg C., Eriksson H., Hannerz F. (2005) River nutrient loads and catchment size, Biogeochemistry, 75, 83-107.
- 2) Perona E., Bonilla I., Mateo P. (1999) Spatial and temporal changes in water quality in a Spanish river, The Scientific of the Total Environment, 241, 75-90.
- 3) 黒田清一郎,田渕俊雄(1996) 湧水中の硝酸

態窒素濃度と負荷量の変動-野菜畑地から の硝酸態窒素流出特性に関する研究(I)-, 農業土木学会論文集,181,31-38.

- 山田俊郎,井上隆信(2004)農耕地からの リンの流出,衛生工学シンポジウム論文集, 12,57-60.
- 金木亮一,須戸幹,芝原勉(2006)水田からの窒素・リン流出負荷の削減,水文・水資源 学会誌,19,360-371.
- 和田桂子,藤井滋穂 (2006)雨天時における 路面排水の水質特性および汚濁負荷の流出 挙動に関する研究,水環境学会誌,29,699-704.
- 渡邊未来,越川昌美,林誠二,越川海,村田 智吉,山村茂樹,高松武次郎(2007)茨城県 筑波山における森林地の窒素飽和の現状評 価,日本陸水学会第72回大会講演要旨集, 222.
- 志村もと子,田渕俊雄(1996)素堀貯留池を 伴う養豚場が河川の窒素濃度に及ぼす影響– 畜産主体の集水域における窒素流出に関する 研究(I)-,農業土木学会論文集,182, 1-7.
- 9) 志村もと子,田渕俊雄(1996)素堀貯留池を 伴う養豚地域の河川窒素濃度・負荷の時期変 動-畜産主体の集水域における窒素流出に 関する研究(II)-,農業土木学会論文集, 182, 9-16.
- 10) 志村もと子,田渕俊雄(1996) 養豚飼養頭数 密度と河川水窒素濃度との関係 – 畜産主体の

集水域における窒素流出に関する研究(Ⅲ) -, 農業土木学会論文集, 182, 17-23.

- 志村もと子、田渕俊雄(1997)養牛地域における畜産と河川水窒素濃度との関係-畜産主体の集水域における窒素流出に関する研究 (IV) -, 農業土木学会論文集, 189, 45-50.
- 12) 茨城県公害技術センター,茨城県公害防止協会(1999) 霞ヶ浦流入汚濁負荷量等実態把 握調査報告書(河川編),pp.130.
- 山本哲也,栗田初美,菊池信生(2001) 霞ヶ 浦流入河川における水質と汚濁要因の変化に 関する検討,茨城県公害技術センター研究報 告,11,43-55.
- 14) 茨城県霞ケ浦環境科学センター(2006) 2-17 GIS を用いた流域管理手法に関する調査研究,茨城県霞ケ浦環境科学センター年報,1,44-45.
- 15) 茨城県霞ケ浦環境科学センター (2007) 2-1-8 GIS を用いた流域管理手法に関する調査研究,茨城県霞ケ浦環境科学センター年報,2, 50-51.
- 16)(財)統計情報研究開発センター,「平成12 年度国勢調査地域メッシュ統計(茨城県・栃 木県)」
- 17)(財)農林統計協会,「2000年世界農林業センサス」
- 18) 関東農政局水戸統計・情報センター(2005) 茨城県農林水産統計年報,309pp.,茨城農林 水産統計協会,茨城.

霞ケ浦における藍藻綱ユレモ目のフロラ

本間 隆満 The blue-green algal flora of Oscillatoriales in Lake Kasumigaura Takamitsu HOMMA

キーワード:藍藻、ユレモ目、形態学的分類、フロラ、霞ケ浦

1 はじめに

茨城県に位置する霞ケ浦は、年間を通じて異質 細胞とアキネートを形成しない糸状群体(トリ コーム)を形成する藍藻綱ユレモ目が繁茂して いる。しかしながら、そのユレモ目のフロラを 明らかにするような形態分類学的調査は実施さ れていない。そこで、本研究は Anagnostidis と Komárek によって提案された新しい分類体系¹⁾ に基づき、霞ケ浦に出現する藍藻綱ユレモ目につ いて詳細な形態学的分類調査を実施し、そのフロ ラを明らかにすることを目的とした。

2 材料と方法

2-1 藻体の観察およびサイズ計測

トリコームの観察は、光学生物顕微鏡 (Olympus, BX-50, Japan)を用いて総合倍率 1,000倍で行った(10倍接眼レンズと100倍油 浸対物レンズ)。採取した試料の一部は、固定せ ずに、すぐに観察を行いトリコームの運動性を確 認した。その後、ホルムアルデヒド水溶液(最終 濃度2%)で固定した試料から、トリコームの両 端に位置する細胞の細胞分裂の有無、連鎖体形成 時の壊死細胞の有無、粘膜中のトリコーム数、細 胞隔壁のくびれ、連鎖体と不動連鎖体の形成の有 無、頭頂細胞と頂冠(カリプトラ)の形態、鞘の 有無、細胞内の顆粒の状態、ガス胞またはエアロ トープの有無を観察した。

トリコームを形成する細胞の直径および長さ は、顕微鏡に接続したデジタルカメラから画像処 理ソフトを用いてコンピュータに取り込み、画像 解析ソフト (Microanalyzer Ver.1.1d, Nippon-Poladegital, Japan) によって求めた。

2-2 ユレモ目の形態学的分類

ユレモ目の属の形態学的分類は, Komárek と Anagnostidis が提案した新しい藍藻綱の分類表¹⁾ を参照し,細胞の直径,長さとその比,細胞分裂 までに元の細胞の大きさまで生育するか,トリ コームの両端に位置する細胞の細胞分裂の有無, 連鎖体形成時の壊死細胞の有無,粘膜質中のトリ コーム数,細胞隔壁のくびれ,連鎖体と不動連鎖 体の形成の有無,頭頂細胞と頂冠(カリプトラ) の形態,鞘の有無,細胞内の顆粒の状態,ガス胞 またはエアロトープの有無の観察から行った。

3 結果

霞ケ浦で観察されたユレモ目のトリコームは, 全ての細胞が分裂能力を有し,粘質膜を持たな いか,単層の粘質膜を持つプセウドアナベナ科 と,トリコームの先端部以外の細胞が分裂能力を 有し,壊死細胞の補助による連鎖体の分離を行う フォルミディウム科のいずれかに属していた。

3-1 プセウドアナベナ科

細胞は、円筒形で多くの場合直径3µm以下(例 外的に6µm),幅に比べ長さが大きく、同等また は小さいことは稀。鞘を持たないものが多いが持 つ属も含まれる。偽分枝はないものが多いが,鞘 をもつ属には偽分枝をつくる場合もある。運動性 をもつものもあるが、旋回運動はしない。細胞は、 頂冠をもたず、すべてが分裂能力を持ち、次の分 裂までに元の大きさになる。トリコームの分断時 には壊死細胞は形成されない。エアロトープは持 たないか、または局所的に持つ。霞ケ浦で観察さ れたプセウドアナベナ和のトリコームは鞘を持た ないプセウドアナベナ亜科と薄い明確な鞘を持つ レプトリングビア亜科に分類することができた。

(1) プセウドアナベナ亜科

トリコームは単独で浮遊,基質に付着または マット状の群体を形成して生育する。通常鞘を持 たないが,時に粘質性の鞘を持つ属も存在する。 ガス胞とエアロトープは時に細胞先端または中心 部にできる。偽分枝は持たず,生殖は不動連鎖体, 連鎖体および単一細胞への分散による。霞ケ浦に おいてプセウドアナベナ亜科の特徴を有するトリ コームは,すべて円筒形の細胞からなり,粘質性 の鞘を持たず単独で浮遊していた。これらのトリ コームは,細胞隔壁でくびれ,エアロトープをも たないか時に細胞端にもつものを Pseudanabaena 属,細胞隔壁でくびれず細胞の両端に常にエアロ トープをもつものを Limnothrix 属,細胞隔壁で くびれずエアロトープをもたず,運動性のないも のを Jaaginema 属にそれぞれ分類した。

① Pseudanabaena 属

電ケ浦で観察された Pseudanabaena 属のトリ コームの形態は,直線状もしくはやや波うち,先 端で細くならず,また頭状にもならなかった。そ れらのトリコームは,細胞隔壁にエアロトープを 常に持たないものと持つものに大きく分けること が出来た。エアロトープを持たないトリコームに ついては,常に細胞隔壁が強くくびれ,細胞の長 さと幅の比が 1.5-3 である P. catenata と先端細胞 が円頭状で細胞隔壁が僅かにくびれるか時にくび れず,細胞の長さと幅の比が 2.5-8 の P. limnetica に分類することができた。

P. catenata と *P. limnetica* は、細胞の幅の平均 値がそれぞれ 1.7 と 1.8μ m と近似しており、細 胞の長さと幅の比も重複する範囲があるが、長さ と幅の比の平均値は 2.3 と 4.0 と明確な差があっ た (Fig.1)。

細胞先端部に 1-2 個のエアロトープをもつ Pseudanabaena 属のトリコームは、細胞直径及び 長さと幅の比が不連続に異なる 2 つのグループに 分かれた (Fig.1)。これらのグループについては、 トリコームの平均直径幅から 2.7 µm 以下、長さ と幅の比が 2 以上のトリコームを P. galeata、平 均直径幅が 2.7 以上、長さと幅の比が 2 以下を P. biceps にそれぞれ分類した。

霞ケ浦において Pseudanabaena 属は, P. galeata を中心に西浦と北浦の両方で年間を通じて数多く 観察され,特に夏期に高い細胞密度で分布していた。

Fig.1 The plot of cell length/width ratio against cell width for various *Pseudanabaena* trichomes. Vertical and horizontal bars mean standard deviation.

② Limnothrix 属

Limnothrix 属は、直線状と規則的な螺旋状のト リコームが観察された。それぞれのトリコームは、 粘質性の鞘を持たず,細胞の直径が1.5μm以上, 幅と長さの比が常に2以上であり、明るい青緑 色を呈し、エアロトープが常に細胞両端に形成さ れる点で共通していた。これらの特徴から、直線 状のトリコームについては L. redekei と同定され たが、螺旋状のトリコームについては Komárek と Anagnostidis の分類基準¹⁾ に一致する種がな かった。Limnothrix 属の分類基準によれば、螺旋 状のトリコームを形成する Limnothrix 属は全て 細胞の中心部にエアロトープを形成する特徴を有 するが、本調査で観察された螺旋状のトリコーム は細胞両端にエアロトープを有していた。しかし、 分類基準の多くが L. redekei と一致していたこと から L. redekei の変種, または新種の Limnothrix 属であるのものと考えられる。

霞ケ浦において, 西浦と北浦の両方で観察され, 特に冬期に多く出現した。

③ Jaaginema 属

Jaaginema 属のトリコームは、運動性がなく, 粘質膜を持たず、単独または絡み合った状態か薄 い膜状で生育する。細胞は、円筒状で幅と長さ の比は10程度にまで達するが、稀に等長、エア ロトープは形成されない。 霞ケ浦で観察された *Jaaginema* 属のトリコームは、明るい青緑色を呈 し、単独で浮遊する直径が $1 \mu m$ 程度 (平均値 1.1 μm ,標準偏差 $0.2 \mu m$)で、細胞の長さの平均 が $4.9 \mu m$,細胞隔壁は厚くくびれないことから *J. gracile* に同定できた。

電ケ浦では, *J. gracile* は夏期の西浦の湖水から 稀に観察された。

(2) レプトリングビア亜科

トリコームは不動,細胞の直径は最大4μmま で,ガス胞は持たない。時に明確な鞘に包まれた 糸状体を形成する。稀に偽分枝を持ち,生殖は不 動連鎖体による。レプトリングビア亜科は,プ ランクトン性藻類の Planktolyngbya 属,付着性藻 類(主に epiphytic)の Leibleinia 属と底生藻類 の Leptolyngbya 属が含まれる。霞ケ浦の湖水中か らは Planktolyngbya 属のトリコームのみが観察さ れた。

① Planktolyngbya 属

Planktolyngbya 属は,直線的かやや波うつトリ コームを形成し,平均直径が 1.4μ m,直径と 長さの比が常に 1.2 以上(平均 2.8)である *P. limnetica* と,規則的または不規則的な螺旋状の トリコームを形成し平均直径が 1.8μ m,直径と 長さ比がほぼ等しい(平均値 1.2), *P. contorta* の 2 種に同定できた。

霞ケ浦において *Planktolyngbya* 属は, *P. limnetica* と *P. contorta* ともに西浦と北浦の双方で夏期に多く観察された。

3-2 フォルミディウム科

トリコームは単独,またはマット状に集合する。 鞘は持たないものが多い。鞘は両端が開き,1本 またはそれ以上のトリコームを持ち,運動性を示 すことがある。細胞分裂は頭頂細胞以外のすべて で起こり,次の分裂の前までにほぼ元の大きさま で生長する。ガス胞は持たないものが多い。成熟 したトリコームは先端部に頂冠または肥厚化した 細胞壁を形成することもある。生殖は,壊死細胞 の形成による連鎖体または不動連鎖体の分断によ る。霞ケ浦で観察されたフォルミディウム科のト リコームは, すべて円柱状の細胞からなる単独 で生活するトリコームを形成していたことから, フォルミディウム亜科に分類することができた。

(1) フォルミディウム亜科

糸状体は鞘を持たないか,環境ストレスに応じ て形成することもある。通常偽分枝をつくらな いが,稀につくることもある。常に鞘の中には1 本のトリコームが存在し,単独,群体または粘質 性のマット状で生育する。細胞は円筒形,運動を 示す。生殖は壊死細胞を介した連鎖体の分離によ る。フォルミディウム亜科の特徴を有するトリ コームは,細胞内全体にガス胞を持ち,単独で浮 遊生活し,直線的トリコームを形成し,成熟期に トリコームの先端に頂冠を形成する Planktothrix 属,常に頂冠を持たない Planktothricoides 属,規 則的に螺旋するトリコームをもつ Arthrospira 属 とガス胞を持たず単独で直線的トリコームをもつ Phormidium 属に分類できた。

① Planktothrix 属

Planktothrix 属のトリコームは、細胞は円筒状 で、隔壁はくびれないか、またはごく僅かにくび れるなど形態が非常に良く似ていたものの、細胞 直径、細胞の長さと幅の比の違いから2種に分 けることができた(Fig.2)。細胞全体に大きなガ ス胞が少なく分布し、細胞直径が4 μ m以下(平 均値 3.1 μ m)、長さと幅の比が同等かそれ以上 の特徴を有するトリコームを P. suspensa、細胞 全体に小さなガス胞が多く分布し、細胞直径が 4 μ m 以上(平均値 5.3 μ m)、長さと幅の比が 0.6 から 1 の範囲に入るトリコームを P. agardhii と同定した。P. agardhii は、かつて Oscillatoria agardhii と記載されていた藻体と同種である。

Planktothrix agardhii は、かつて霞ケ浦におい て Microcystis 属に変わる夏期の優占藻類として 報告されている²⁾。しかし、本調査を実施した 2007 年では西浦で稀に観察される程度であり、 優占種になることはなかった。P. suspensa は、西 浦において 2007 年の夏期から冬期にかけて顕著 な増加傾向を示し、西浦全域において優占種と なった。

Fig.2 The plot of cell length/width ratio against cell width for *Planktothrix agardhii, Planktothrix suspensa and Planktothricoides raciborskii* trichomes. Vertical and horizontal bars mean standard deviation.

② Planktothricoides 属

電ケ浦で観察された *Planktothricoides* 属は,直 径が8μm以上と大きく(平均値12μm),細 胞の長さと幅の比は常に1以下。トリコームの 先端はやや細く変形し僅かに曲がる特徴から*P. raciborskii* と同定された。

Planktothrix 属 と Planktothricoides 属 の 分 類 に関しては頂冠の形成の有無を確認する必要 があるが, 霞ケ浦に出現する Planktothrix 属と Planktothricoides 属の細胞の幅は明確に分離して いるため (Fig.2), 細胞のサイズ測定だけでも十 分に分類できる。これは, 過去に霞ケ浦におい て Oscillatoria raciborskii, もしくは Planktothrix raciborskii と記載されていた藻体と同種である。

Planktothricoides raciborskii は,西浦において 夏期に極めて稀に観察された。

③ Arthrospira 属

Arthrospira 属のトリコームは、細胞直径の平 均値が $2.8 \mu m$ 、細胞の長さの平均値が $4.2 \mu m$ 、 細胞の長さと幅の比が 1.2-1.9 であった。トリ コームは規則的な螺旋を巻き、螺旋の直径は約 $50 \mu m$ 、螺旋の間隔は約 $40 \mu m$ であった。これ らの特徴から A. maxima に分類された。

Arthrospira maxima は、北浦の夏期に採取した

試料中に極めて稀に出現した。

④ Phormidium 属

霞ケ浦で観察された Phormidium 属のトリ コームは、明確な鞘や粘質膜を持たず、ガス胞お よびエアロトープを持たず、直線的で単独で浮遊 し、細胞の直径(平均値 2.4 µ m) と長さ(平均 値3.0µm)がほぼ等しく、細胞の長さと幅の比 の変化域は 0.6-2.4 (平均値 1.2) であった。生 殖は壊死細胞の補助による連鎖体の分断による。 細胞隔壁の近くに赤色の小さな顆粒が 1-2 個配 列していた。これらの特徴は, Phormidium willei (Gardner) Anagnostidis et Komárek 1988 と良 く一致していた。しかし, P. willei はアフリカや キューバなど熱帯や亜熱帯の湖沼から報告されて いる¹⁾。 霞ケ浦の Phormidium 属のトリコームは, Planktothrix suspensa に混じり, 西浦全域におい て冬期の水温の低い期間で顕著な増加傾向が観察 された。したがって、熱帯または亜熱帯に生息す る P. willei と同種とは考えにくいことから別種で あろうと判断した。

4 考察

霞ケ浦に出現する藍藻綱ユレモ目について詳細 な観察を行い、その形態学的特徴から2科3亜 科8属14種に分類することが出来た。霞ケ浦 には、他の藻類の粘質膜中で生活する藻類、沿 岸域などの底泥上を生育域とする底生藻類、及 び沿岸部の水生植物やコンクリート護岸などに 付着生活する藻類にも多彩なユレモ目が存在す ると考えられるが、浮遊性藻類として生活する 種については記載することができたものと思わ れる。しかし、霞ケ浦において優占種として多 くの研究機関から報告されていた Oscillatoria 属 と Phormidium tenue は観察されなかった。これ らの結果は、従来の形態学的分類と Komárek と Anagnostidis との科・属レベルの種の取り扱い の違いによって説明することができる。Geitler³⁾ に代表される従来の形態学的分類体系では, Oscillatoria 属や Phormidium 属は, 鞘の有無等 によって分類されていたが、その中には例外が多 く、異質な分類群が混在していることが指摘され ていた。Komárek と Anagnostidis¹⁾ は、これら

の問題点を克服するため、科以下の分類につい て大幅な再編を行い, Oscillatoria 属のうち細胞 全体にガス胞を有するトリコームを Planktothrix 属に, Phormidium 属に含まれていた多くの種を Leptolyngbya 属, Planktolyngbya 属, Leibleinia 属 と Jaaginema 属に移すなど修正がなされている。 その結果, Phormidium tenue とされていた藻体 はレプトリングビア科 Leptolyngbya 属(主に L. tenuis) に移行されている。しかし、本調査結果 には Leptolyngbya 属は確認されなかった。おそら く、過去の報告では、薄い明確な鞘をもつレプト リングビア科の Planktolyngbya limnetica と鞘を持 たないプセウドアナベナ科の Pseudanabaena 属 や Limnothrix 属を混同して, Phormidium tenue と同定していたのではないだろうか。これらのト リコームは細胞のサイズが似ており、分類する際 には鞘の有無だけではなく,細胞の長さの変動幅, トリコームの運動性、及びエアロトープの有無が 重要な情報になるため,慎重な観察が必要である。

本研究は, 霞ケ浦に出現するユレモ目につい て種レベルまで分類を行い, そのフロラを明ら かにした。しかし, 幾つかの藻については, 種 を同定するまでには至らなかった。Komárek と Anagnostidis による分類体系¹⁾は, 欧州で採取 された試料に基づく記載が多く, 必ずしも本邦に 出現する藻体と一致するとは限らない。このため 今後, 霞ケ浦を中心とした本邦淡水湖沼におけ るユレモ目の植物相調査, 生態学的調査, 分離 株による様々な培養条件下での形態変化および 16sRNA 解析などの知見を蓄積することが, 霞 ケ浦および本邦におけるユレモ目の優占機構を理 解するために必要である。

謝 辞

本研究の実施にあたり国立科学博物館植物研究 部名誉研究員である渡邊眞之氏に多大なる協力を 戴きました。ここに謹んで謝意を表します。 本研究は文部科学省から「特別電源所在地県科学 技術振興事業補助金」の交付を受けて実施された。

引用文献

- Komárek, J. and Anagnostidis, K. (2005) Cyanoprokaryota 2. Teil/2nd Part: Oscillatoriales. In:. B. Büdel, L. Krienitz, G. Gärtner and M. Schagerl (ed.) Süsswasserflora von Mitteleuropa 19/2,. Elsevier/Spektrum, Heidelberg.
- Takamura, N., Otsuki, A., Aizaki, M. and Nojiri, Y. (1992) . Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Archiv für Hydrobiologie, 124, 129-148.
- Geitler, L. (1932) Cyanophyceae. L. Rabenhorst's Kryptogamen-Flora, 14:1196 pp. Akademische Verlagsgesellschaft, Leipzig.

Appendix table Morphometric and morphological characteristics of the Oscillatoriales trichomes observed in Lake Kasumigaura.

Pseudanabaenaceae Pseudanaenoideae	<u>max</u>	mean	SD	min	max	mean	SD	min	max	Vegetative cells
Pseudanabaenaceae Pseudanaenoideae	2.4									
Pseudanaenoideae	2.4									
	2.4									
Pseudanabaena	2.4									
Pseudanabaena catenata 1.7 0.3 1.0		4.0	0.8	1.8	6.5	2.3	0.4	1.2	3.8	Cylindrical, without aerotopes
Pseudanabaena limnetica 1.8 0.3 1.2	2.6	7.3	1.8	3.6	12.1	4.0	0.8	2.1	7.1	Cylindrical, without aerotopes
Pseudanabaena galeata 2.3 0.3 1.6	3.0	6.1	1.6	2.2	12.7	2.7	0.6	1.1	6.7	Cylindrical, with one or two polar aerotopes
Pseudanabaena biceps 2.9 0.2 2.2	3.6	5.1	0.8	2.5	8.3	1.8	0.2	0.8	2.8	Cylindrical, with 1-3 polar aerotopes
Limnothrix										
Limnothrix redekei 1.7 0.2 1.1	2.2	7.0	1.4	3.7	12.4	4.3	0.8	2.3	8.7	Cylindrical, with one or two polar aerotopes
Coiled Limnothrix sp. 1.4 0.2 1.1	1.7	6.9	1.5	3.5	9.4	5.1	1.3	3.2	7.7	Cylindrical, with one or two polar aerotopes
Jaaginema										
Jaaginema gracile 1.1 0.2 0.7	1.6	5.2	0.3	2.8	7.6	4.9	1.2	1.8	8.7	Cylindrical, without aerotopes
Leptolyngbyoideae										
Planktolyngbya										
Planktolyngbya limnetica 1.4 0.2 1.0	2.6	3.9	0.5	1.5	7.3	2.8	0.4	1.2	5.3	Cylindrical, without aerotopes
Planktolyngbya contorta 1.8 0.2 1.1	2.3	2.0	0.4	1.0	4.4	1.2	0.2	0.5	2.2	Cylindrical, without aerotopes
Phormidiaceae										
Phormidioideae										
Arthrospira										
Arthrospira maxima 2.8 0.2 2.6	3.0	4.2	0.7	3.6	5.3	1.5	0.3	1.2	1.9	Cylindrical, with numberous aerotopes
Planktothricoides										-, ,
Planktothricoides raciborskii 12.0 0.8 8.6	14.5	4.6	0.5	3.0	8.2	0.4	0.0	0.3	0.8	Cylindrical, with numberous aerotopes
Planktothrix										
Planktothrix agardhii 5.3 0.6 3.2	8.2	3.3	0.3	1.6	7.0	0.6	0.1	0.3	1.3	Cylindrical, with numberous aerotopes
Planktothrix suspensa 3.1 0.3 2.1	4.6	2.7	0.4	1.2	7.4	0.9	0.1	0.4	2.2	Cylindrical, with numberous large aerotopes
Phormidium										
<i>Phormidium</i> sp. 2.4 0.2 1.6	3.4	3.0	0.4	1.3	5.4	1.2	0.2	0.6	2.4	Cylindrical, without aerotopes

霞ケ浦流域モデルの構築と河川流域への適用

北村 立実 Construct of Kasumigaura basin model and application to river basin Tatsumi KITAMURA

キーワード:霞ケ浦流域、GIS、排出負荷量、河川水質変化

1 はじめに

電ケ浦は全国第2位の湖面積を誇り、湖水は 生活用水、工業用水、農業用水に幅広く利用され ている。また、漁業も盛んに行われ、流域住民と 霞ケ浦は密接な関係を保っている。しかし、霞ケ 浦の水質は改善しておらず¹⁾、依然として流域か らの汚濁負荷が大きな割合を占めている。霞ケ浦 の水質を保全するためには流域からの負荷を効率 的に削減することが重要である。近年ではGIS(地 理情報システム)を用いた流域管理システムの構 築及び検討がなされている²⁾。

そこで、本研究では霞ケ浦流域情報を GIS に データベース化し、それを基に霞ケ浦流域からの 排出負荷量を算出した。さらに流域環境の変化に 伴う河川水質の予測を行うことが可能な流域モデ ルを構築し、桜川流域における汚濁負荷削減対策 を行った場合の効果について検討を行った。

2 データベースの構築

2-1 背景データ

国土交通省国土地理院発行の数値地図 2500 及 び数値情報 (KS-273), 流域自然環境調査データ³⁾ 及び国土交通省霞ヶ浦工事事務所発行の霞ヶ 浦・常陸利根川流域図を基に, GIS ソフト (SIS Mapmodeller ver6.2)を用いて霞ケ浦流域界, 市町村界,河川流域界を作成した (図1)。

2-2 メッシュデータ

電ケ浦流域を 500m×500m のメッシュに区分 し, 各メッシュごとに項目別データ(表1)を Microsoft Excel で作成した。

また,国土数値情報のオリジナルデータと背景 データから市町村単位にメッシュ区分することで 現況(平成16年度)の市町村データ資料を入力し, 重み付け配分することによって,現況のメッシュ データを再現した。

図1 霞ケ浦流域界と河川流域界

表1 メッシュデータ一覧

項目	分類	項目	分類
人口	人口		ガス供給業
	下水処理人口		水道業
	農業集落排水人口		旅館業
加田式能见し口	合併浄化槽人口		洗濯業
処理形態別入口	単独浄化槽人口		他の個人サービス業
	し尿処理人口		医療業
	自家処理人口	主業信排 水	学術研究機関
	食料品	书木物 孙小	その他のサービス業
	飲料・たばこ・飼料	1	給食センター
	繊維工業	1	と畜業
	衣料その他の繊維製品	1	浄化槽(501人以上)
	木材·木製品	1	単独浄化槽(201~500人)
	宝具·装備品	1	合併浄化槽(201~500人)
	パルプ・紙・加工品		飲食店
	出版・印刷・同関連品		肉牛
	化学工業品	家畜頭数	乳牛
	石油製品·石炭製品		豚
十 要山 共 姑	プラスチック製品		山林
工未山何韻	ゴム製品	1	水稲田
	なめし革同製品・毛皮製品		ハス田
	窯業·土石製品	十十十日	転作田
	鉄鋼製品	工地利用	不作付田
	非鉄金属製品	1	畑
	金属製品	1	市街地
	一般機械器具製品]	その他
	電気機械器具製品		
	輸出用機械器具製品]	
	精密機械器具製品]	
	その他の製造品]	

2-3 地点データ

地点データ(表 2) については GIS に緯度経度 を設定することで,地点の情報や観測データ等を 表示可能とした。河川水質観測地点等の観測デー タは,2001年~2005年の5年間の時系列デー タを Microsoft Excel により整備した。

3 流域のモデル化

霞ケ浦流域における水の流れや物質の流れを再 現する解析モデルとして,流域の地層を4層に 分割(a層~d層)し,層ごとの水や物質の流れ

項目	地点数	時系列データ	測定間隔	観測データ	単位
				降水量	mm
				大気圧	hPa
				気温	°C
気象観測地点	25	0	1日	水蒸気圧	hPa
				日照時間	hr
				風速	m/s
				積雪深	CM
農業取水施設	27	-	-	-	-
下水処理排水施設	7	-	-	-	-
農業集落排水施設	42	-	-	-	-
し尿処理排水施設	20	-	-	-	-
農業用水通水地点	28	-	-	-	-
湖沼放流地点	3	0	1日	-	-
河川流量観測地点	21	0	1日	-	-
				流量	m3/s
河川水質観測地点	30	0	1ヶ日程度	COD	mg/L
	55	Ŭ	17月11月2	T-N	mg/L
				T-P	mg/L
地下水位観測地点	20	Ô	1日	水位	m
河川代表地点	11	-	-	-	-
ボーリング代表地点	20	-	-	-	-

表2 地点データ一覧

を表し,流域を3次元的に表現する手法⁴⁾を適 用した。

3-1 落水線の設定

国土交通省国土地理院発行の国土数値情報の流 路位置(KS-272)および流域界,非集水界線位 置(KS-273)データから単一水系域の 500m メッ シュの落水線データを作成した。

3-2 蒸発散モデル

メッシュ毎に蒸発散量を算定した。気温は観測 地点と各メッシュとの標高差に気温減率を乗じて 算出し,気圧,空気密度は測高公式を用いて算出 した。風速はティーセン法を用いて観測所のデー タを割り当てた。

接地境界は熱収支法で表し,基本式は以下のと おりとした⁵⁾。

ここで、R ↓:入力放射 (Js⁻¹m⁻²)、 σ Ts⁴:長波 放射 (Js⁻¹m⁻²), H:顕熱 (Js⁻¹m⁻²), IE: 潜熱 (Js⁻¹m⁻²), G:貯熱量 (Js⁻¹m⁻²), σ :ステファン・ボルツ マン定数 (Js⁻¹m⁻²K⁴), Ts:地表面温度 (K), 1: 水の気化の潜熱 (Jkg⁻¹), T:温度 (K), E:蒸 発量 (kg s⁻¹m⁻²), ref:アルベド (入力放射の反 射率), S ↓:全天日射量 (Js⁻¹m⁻²), L ↓:長波 放射量 (Js⁻¹m⁻²), C_p:空気の定圧比熱 (Jkg⁻¹K¹), ρ_a :空気の密度 (kgm⁻³), C_H:顕熱輸送のバル ク輸送係数, U:風速 (ms⁻¹), T_a:気温 (K), β : 蒸発散効率, q_{asat} :飽和比湿 (gkg⁻¹), q_a :比湿 (gkg⁻¹) である。

貯熱量 G は,陸地面においては昼間と夜間で 相殺されるため,無視 ($G \approx 0$)した。

3-3 流れ解析モデル

平面的にはメッシュ単位で,鉛直的には4層(a ~ d 層)の多層系を用いて3次元的に表現した。 地表面, a 層の流れ及び河川に対して kinematic wave 法, b 層以降は線形貯留モデルを適用した。 蒸発散量は a 層から差し引いた。水田は季節によ り土壌表面が変化するため,灌漑期(4月~8月) を設定し, 畦畔越流や浸透を考慮した表面流出を 設定した。流れ解析モデルの概念図を示す(図2)。

図2 流れ解析モデルの概念図

(1) 陸域モデル

а

次式は地表面及び a 層を対象にした kinematic wave 法を示したものである。

$$\frac{\partial h_{al}}{\partial t} + \frac{\partial q_{al}}{\partial x} = r f_{al} \tag{6}$$

$$q_{al} = \begin{pmatrix} \alpha (h_{al} - d_a)^{m_b} + ah_{al} \\ ah_{al} \end{pmatrix} \quad \text{when } h_{al} \begin{pmatrix} \ge d_a \\ < d_a \end{pmatrix} \quad m_b = \frac{5}{3}$$
(7)

$$d_a = \lambda_a D_a \tag{8}$$

$$\alpha = \frac{\sqrt{\sin \theta}}{n} \quad (\text{Manning } \underline{\mathbb{P}}) \tag{9}$$

$$=\frac{k\sin\theta}{\lambda_a} \tag{10}$$

h:水深 (m), q:単位幅流量 (m²s⁻¹), r:降 雨強度 (ms⁻¹), f:直接流出率, sin θ :斜面勾配, n:斜面の等価粗度 (m^{-1/3}s), k:透水係数 (ms⁻¹), λ :空隙率, D:層厚 (m), d:飽和貯水量 (m), l:土地利用 (畑,山林,市街地)を表す添字, a: a 層を表す添字。

水田に関しては, 畦畔越流や畦畔横浸透を反映 させた複合タンクモデルとした。

$$\frac{dh_{al}}{dt} = rf_{al} - q_{al} \tag{11}$$

$$q_{al} = \sum_{j} ap_{j} \max(h_{al} - Zap_{j}, 0)$$
(12)

h: 貯留高 (m), q: 流出量 (ms⁻¹), ap 及び Zap: 複合タンクモデル定数 (s⁻¹) 及び (m), j: タンク孔を表す添字, 1: 土地利用 (水田) を表 す添え字。

b ~ d 層での流出量は次の線形貯留モデルにより算定した。

b 層

$$qh_b = kh_b \max(h_b - Z_b, 0) \tag{17}$$

$$qv_b = kv_b h_b \tag{18}$$

$$Z_b = D_b (\lambda_b - \lambda_w) \tag{19}$$

$$u_{b} = \begin{pmatrix} h_{b} - d_{b} \\ 0 \end{pmatrix} \quad \text{when } h_{b} - d_{b} \begin{pmatrix} \geq 0 \\ < 0 \end{pmatrix}$$
(20)

$$d_b = \lambda_b D_b \tag{21}$$

I:流入量 (ms⁻¹), q:流出量 (ms⁻¹), u:復 帰量 (ms⁻¹), A:流域面積 (km²), kh および kv:現地土壌の水平および鉛直関連定数 (s⁻¹), a, b:a 及び b 層を表す添字, l:土地利用を表す添字, λ_w:流出に寄与する空隙率。

ただし, 貯留高 h が飽和貯水量 d を超過した 場合,その溢水量 u は上層へ復帰するものとした。

また, c 層及び d 層は b 層とほぼ同様であるが, d 層は最下層のため溢水量は無視した。

(2) 河道モデル

次式は河道を対象にした kinematic wave 法を 示したものである。

$$\frac{\partial Ar}{\partial t} + \frac{\partial Qr}{\partial x} = qr \tag{22}$$

$$Qr = \alpha_r A r^{m_r} \tag{23}$$

$$\alpha_r = \left(\frac{\sqrt{I}}{n} \left(\frac{m}{\left(2\sqrt{1+m^2}\right)^2} \right)^{\frac{1}{3}} (\text{Manning } \underline{\pi} \underline{y}), \quad m_r = \frac{4}{3}$$
(24)

$$qr = 2\frac{\sum_{l,l \neq p} q_{al} A_l}{\sum_{l,l \neq p} A_l} + \frac{q_{ap} A_{l,l \in p} + (q_b + q_c) A + q_w}{bl}$$
(25)

$$A = \sum_{l} A_{l} \tag{26}$$

Ar:流水断面積 (m²), Qr:流量 (m³s⁻¹), qr:橫流入量 (m²s⁻¹), I:河道勾配, n:河道の 等価粗度 (m^{-1/3}s), m:河道の法面勾配, bl:河 道長 (m),qw:地先からの点源排水量 (m³s⁻¹),A: 流域面積 (水域除く) (m²), p:土地利用のうち 水田を表す添え字である。

流れ解析モデルのパラメータは他の研究事例⁶⁾ や非線形計画法の1つである *Randon Search Technique* 法⁷⁾ によって設定した。

表3流れ解析パラメータ

項目	単位	数値
透水係数	m/s	1.125E-05
空隙率	%	1.000E+01
b層水平流出係数	1/d	3.126E-02
c層水平流出係数	1/d	6.520E-03
d層水平流出係数	1/d	3.910E-01
b層鉛直浸透係数	1/d	1.055E-01
c層鉛直浸透係数	1/d	1.269E-02
d層鉛直浸透係数	1/d	0.000E+00

3-4 水質解析モデル

流れ解析モデルと同様に鉛直的に4層(a層~ d層)のタンクを配置し,土地利用に応じた負荷 流出を考慮した。点源流出負荷量,面源流出負荷 量,層から層への浸透負荷量を算出し,a層につ いては堆積,溶脱,掃流,汚濁堆積物の生産分解・ 減少,b~d層では浸透,土壌蓄積,溶脱過程を 考慮したモデルを適用した。河川では沈降等の自 然浄化を考慮したモデルとした。模式図を以下に 示す(図3)。

(1) 運動式

① 点源流出負荷量

$$L_0 = fL_p$$

② 面源流出負荷量(点源起因の堆積物の掃流を 含む)

図3 水質解析モデルの概念図

タンク-a

$$L_a = C_a Q_a A + k_{wp} S_{ap} Q_a A + k_{wr} S_{ar} Q_a^2 A$$
(27)

タンク-b, タンク-c, タンク-d

 $L_b = C_b Q_b A, \quad L_c = C_c Q_c A, \quad L_d = C_d Q_d A$ (28)

③ 浸透負荷量

タンク -a からタンク -b への浸透負荷量

$$L_{ab} = C_a P_{ab} A \tag{29}$$

タンク -b からタンク -c, タンク -c からタンク -d への浸透負荷量も同様とした。

L_p:点源負荷排出負荷量(kg/d),A:流域面 積(km²),f:晴天時流出率,C_i:タンクiのタ ンク内水質(mg/L),k_{wp}:点源起因の堆積負荷 の掃流係数(1/mm),Q_i:タンクa-cの流出高 (mm/d),k_{wr}:面源起因の堆積負荷の掃流係数(1/ mm²),P_{ij}:タンクiからタンクjへの浸透高(mm/ d),S_{ap}:点源起因の堆積負荷量(kg/km²),S_{ar}: 面源起因の堆積負荷量(kg/km²)。

(2)連続式

① 堆積負荷掃流過程

$$\mathcal{P} \sim \mathcal{P} - \mathbf{a}$$

$$A \frac{d(C_a H_a)}{dt} = C_r R A - C_a Q_a A - k_{a1} C_a H_a A + k_{a2} S_{ar} A - L_{ab} \quad (30)$$

$$A\frac{dS_{ap}}{dt} = (1-f)L_p - k_{dp}S_{ap}A - k_{wp}S_{ap}Q_aA$$
(31)

$$A\frac{dS_{ar}}{dt} = L_{np} - k_{dr}S_{ar}A + k_{a1}C_{a}H_{a}A - k_{a2}S_{ar}A - k_{wr}S_{ar}Q_{a}^{2}A \quad (32)$$

浸透,土壌内堆積,溶脱過程
 タンク-b

$$A\frac{d(C_{b}H_{b})}{dt} = L_{ab} - L_{b} - L_{bc} - k_{b} \left(C_{b}H_{b} - r\frac{SC_{b} + SC_{b0}}{SC_{b0}}SC_{b}H_{bmx}\right)A$$
(33)

$$A\frac{d(SC_bH_{bmx})}{dt} = k_b \left(C_b H_b - r \frac{SC_b + SC_{b0}}{SC_{b0}} SC_b H_{bmx} \right) A - k_{db} SC_b H_{bmx} A \quad (34)$$

タンク -c 及びタンク -d はタンク -b とほぼ同 様であるが, d 層は最下層のため溢水量による負 荷量は無視した。

 $H_i: タンクiの貯留高 (mm), H_{imx}: タンク内$ $の飽和水量 (mm), <math>k_{dp}$ および k_{dr} : 地表面にお ける点源由来堆積物および面源由来堆積物の減衰 係数 (1/d), k_{di} :土壌内蓄積物の減衰係数 (1/d), $k_i: 土壌タンク内の吸脱着速度係数 (1/d), C_r:$ 降雨水質 (mg/L), R:降雨量 (mm/d), SC_i: 土壌タンク内の土壌蓄積量 (kg/km²), k_{al} : 表 面タンクの吸着速度定数 (1/d), k_{a2} : 表面タン クの脱着・可溶化速度定数 (1/d), r(SCi+SCi0)/SCi0: 土壌タンクにおける吸着平衡定数 (1/ mm)。

(3) 河道モデル

河川底泥の堆積負荷が存在しない場合には,摩 擦速度が限界摩擦速度を超えていても再浮上は生 じないものとした。

$$\frac{\partial (A_r C_r)}{\partial t} + \frac{\partial (A_r V_r C_r)}{\partial x} = \frac{\partial}{\partial x} \left(A_r D_r \frac{\partial C_r}{\partial x} \right) - W \frac{A_r}{H_r} + G \frac{A_r}{R} + \frac{L}{bl} \quad (35)$$

$$\begin{pmatrix} W\\G \end{pmatrix} = \begin{pmatrix} 0\\a \begin{pmatrix} u^{*2}\\u_c^{*2}-1 \end{pmatrix}^m \end{pmatrix} \text{ when } u^* \ge u_c^*, \begin{pmatrix} W\\G \end{pmatrix} = \begin{pmatrix} wCr_w\\0 \end{pmatrix} \text{ when } u^* \le u_c^* \text{ (36)}$$

Cr:濃度 (mgm⁻³), Ar:流水断面積 (m²), Vr:断面平均流速 (md⁻¹), Dr:拡散係数 (m²d⁻¹), W:沈降フラックス定数 (mgm⁻²d⁻¹), G:再 浮上フラックス定数 (mgm⁻²d⁻¹), u*:摩擦速度 (md⁻¹), u_c*:限界摩擦速度 (md⁻¹), L:流達負 荷量 (mgs⁻¹), bl:流路長 (m), α:河川底泥 からの再浮上速度定数 (gm⁻²s⁻¹), m:河川底泥 からの再浮上定数である。

なお,水質解析パラメータは表4のとおりで あり,文献⁸⁾を基に設定した。

表4 水質解析パラメータ

項目	単位	COD	T-N	T-P
限界摩擦速度	m/d	7.000E-02	7.000E-02	7.000E-02
沈降速度	m/d	5.000E-06	5.000E-06	5.000E-06
再浮上係数m	-	1.700E+00	1.700E+00	1.700E+00
再浮上係数a	g/m2/s	1.000E-04	5.000E-05	5.000E-05
点源堆積負荷の減衰係数	1/d	0.000E+00	0.000E+00	1.000E-01
点源堆積負荷の掃流係数	1/mm	1.000E-02	1.000E-02	1.000E-02
面源堆積負荷の減衰係数	1/d	0.000E+00	0.000E+00	1.000E-02
面源堆積負荷の掃流係数	d/mm2	3.500E-05	3.500E-05	3.500E-05
晴天時流達率	-	7.000E-01	8.000E-01	6.000E-01

4 再現性の検討

電ケ浦の流入河川の1つである桜川における 2005年の流量及び水質の実測値と計算値の比較 を行った(図4)。計算期間は2004年から2005 年の2年間とし,2004年を助走期間,2005年 を比較対象期間とした。

その結果, COD 及び T-P に関しては比較的良好 な再現結果を得られたが, T-N に関しては夏季に 差が見られた。また,本モデルでは降雨による水

図4 河川流量と水質の実測値と計算値の比較

質の変化も考慮に入れた計算を行っているが,今 回比較した実測値は晴天時における水質結果であ る。降雨時の水質濃度は流量や物質の運ばれ方に よって時系列的に変化し,測定場所によっても異 なることが考えられるため,時空間的な変動特性 を考慮する必要がある。今後,溶存態窒素の自然 浄化を考慮に入れた調査並びにデータ解析,降雨 時の水質変動の調査によって本モデルの精度を向 上させる必要があると考えられる。

5 排出負荷量の算出

第5期霞ヶ浦水質保全計画の排水量,排出負荷原単位を用い,本モデルにより霞ケ浦流域の排 出負荷量を積算するとともに,茨城県資料(平 成16年度ベース)⁹)との比較を行った(表4)。 その結果,GISによる計算でCOD:23,575 kg/日, T-N:12,753 kg/日,T-P:605 kg/日,茨城県 資料でCOD:22,228 kg/日,T-N:11,807 kg/日, T-P:589 kg/日となり,計算値の方が3~7% 高い傾向を示したが,概ね一致した。

表 5 GIS 計算値と茨城県資料による霞ケ浦流域発 生源別排出負荷量

		GIS計算值		茨城県資料		
	COD	T-N	T-P	COD	T-N	T-P
	kg/日	kg/日	kg/日	kg/日	kg/日	kg/日
下水道	437.2	467.1	10.2	388.0	395.0	7.6
農業集落排水施設	53.9	44.4	10.4	64.6	52.0	15.4
合併処理浄化槽	1112.0	1138.5	111.0	1027.0	1051.0	102.0
単独処理浄化槽	473.2	1022.6	87.6	570.0	1234.0	106.0
し尿処理場	2.6	1.3	0.2	4.2	1.4	0.3
し尿自家処理	0.1	0.1	0.0	0.0	0.0	0.0
雑排水未処理	5246.5	819.8	109.3	4408.0	732.0	103.0
工場系	184.4	36.6	3.5	659.0	227.0	24.5
事業場系	169.7	181.6	20.0	222.0	167.0	18.2
4	927.6	1246.8	7.2	1031.0	1379.0	8.1
豚	2935.9	2092.8	45.0	2358.0	1677.0	35.7
水田	2918.2	1300.4	32.2	2357.0	1079.0	26.3
ハス田	206.7	46.5	11.7	234.0	65.0	13.2
畑地	1168.9	2387.8	36.3	787.0	1632.0	24.4
市街地	5134.2	906.0	83.9	4775.0	749.0	56.0
山林等	2604.4	1060.8	36.7	3339.0	1360.0	47.0
合計	23575.3	12753.0	605.1	22228.0	11807.0	589.0

また、図5にGIS計算値と茨城県資料による 発生源別排出負荷量の相関を示す。点線は計算値 と資料の値が等しいことを示し、点線から離れ るほど差が大きいことを示す。図からCODでは 雑排水未処理,豚、水稲田、畑地で300~700 kg/日GIS計算値が高く、工場系と山林等で400 ~700 kg/日GIS計算値が高く、森林等が300 kg/日低かった。T-Pでは豚、市街地、畑地で10 ~30 kg/日GIS計算値が高く、単独処理浄化槽、

図 5 GIS 計算値と茨城県資料の 発生源別排出負荷量の相関

工場系,山林等で10~20 kg/日低かった。こ のことから豚や工場系, 面源系が大きな差の要因 となっていた。これらの原因として、豚では茨城 県資料は県が実施している処理形態別フレームの 調査結果を用いているが、GIS では昭和 60 年の 分布データ¹⁰⁾から現況の市町村別頭数を重み付 け配分していることから、分布が多少異なってい る可能性がある。工場系では茨城県資料は工業統 計や立入検査結果を用いているが, GIS では平成 12年工業統計の分布データ¹¹⁾を用いていること から、公開されていないデータがあるためと考え られる。面源系では茨城県資料は流域内の市町村 (46 市町村)ごとに集計し、市町村ごとに設定し た流域比率(生活系,工場・事業場系,畜産系, 面源系ごとに設定)により算出しているが, GIS では国土地理院の土地利用データ³⁾を加工し分 類した¹²)結果を用いていることから,計算方法 が異なるため差が生じたと考えられる。

6 設定したシナリオによる排出負荷量と 河川水質の変化

構築したモデルを用いて,桜川流域を対象に負 荷削減対策のシナリオを設定し,排出負荷量の変 化と河川水質への効果を検討した。

6-1 桜川流域の状況

本モデルにより算出した桜川流域に関する状 況等を図6に示した。桜川流域は流域面積351 km²と霞ケ浦流域の中では最大の流域面積であ る。処理形態としては合併処理浄化槽人口が最も 多く、流域人口の約31%で、次いで下水道接続 人口は約25%となっている。土地利用は市街地 が35%と最も多く、水田25%、畑21%と農耕 地も多い。

図6 桜川の流域図及び流域状況

6-2 排出負荷量の算出

本モデルにより桜川流域の排出負荷量を発生源 別に算出した(図7)。CODは生活系の負荷や市 街地の面源系負荷による排出負荷が大きい。T-N は生活系,畜産系の負荷や水田,畑の面源系負荷 の割合が大きい。T-Pは生活系の負荷の割合が大 きい。

6-3 シナリオの設定

シナリオは排出負荷量の割合が最も大きい生活 系の負荷削減を設定した(表 5)。

シナリオでは、すべての世帯が転換ないし接続 したと仮定した。よって、データの入力としては、 シナリオ②では単独処理浄化槽人口を合併処理浄 化槽人口に加えた値を入力し、シナリオ③では単 独処理浄化槽人口及び合併処理浄化槽人口の合計 を下水道接続人口へ加えた値を入力した。

表6 シナリオ一覧

シナリオ	内容
① 現況	現状
 単独処理浄化槽の廃止 	単独処理浄化槽の廃止 合併処理浄化槽への転換
 ③ 下水道への接続 	単独処理浄化槽及び合併処理 浄化槽から下水道への接続

6-4 排出負荷量の変化

排出負荷量に関しては、COD, T-N, T-P 共に シナリオ③が最も大きく削減された。

下水道に接続することにより,生活排水をすべ て下水処理場に集めて処理するため,流域からの 排出負荷量が大きく削減されたと考えられる。特 に桜川中流付近の単独及び合併処理浄化槽人口が 比較的多く分布していたため,分布変化が明確に 表れた(図 8)。

6-5 河川水質の変化

河川水質への効果を検討する地点を環境基準点 の銭亀橋とした。河川水質の変化に関しては排出 負荷量の変化と同様にシナリオ③が大きく改善 され, COD では -1.3 mg/L, T-N で -1.0 mg/L, T-P では -0.01 mg/L という予測結果となった(図 9)。

7 まとめ

霞ケ浦流域の流域情報データや河川水質結果等 をGIS に入力することで霞ケ浦流域データベー スを構築し,原単位法を適用することで排出負荷

図8 各シナリオによる排出負荷量の変化

図9 各シナリオによる河川水質の変化

量を算出した。さらに、各メッシュに流域の流れ 解析モデルと水質解析モデルを組み込み、流域か ら河川への負荷の流れを再現する霞ケ浦流域モデ ルを構築した。これにより流域における排出負荷 削減に関する施策のシナリオを設定し、その効果 を GIS によって可視的に表現・評価することが 可能となった。

しかし,より現実的にモデルを再現するために は以下の点で改良が必要である。

- ・生活系, 畜産系, 工場・事業場系, 面源系の 流域フレームを詳細に把握し, データベース の構築を行うこと。
- ・各河川の降雨時の河川流量や水質,排出負荷 量の変動を調査し,モデルに反映すること。
- ・脱窒作用等の溶存態窒素の自然浄化現象を考 慮したモデルを構築すること。

また,排出負荷量の算出の際に水質保全計画の 原単位を用いているが,原単位の設定に関して, 特に面源系の負荷のデータ不足,調査研究不足等 により課題が提起されている¹³⁾¹⁴⁾。今後,先に 述べたモデルの課題並びにデータの課題を検討し ながら, 霞ケ浦流域モデルの精度を上げることが 必要である。また,これまでも霞ケ浦流域管理に 関する対策¹⁵⁾や費用対効果¹⁶⁾等について検討が 行われていることから,本モデルを用いて河川流 域毎に排出負荷の特徴を整理し,それに応じた流 域管理を検証するツールとして活用したい。

謝 辞

本研究のデータベースの構築にあたっては国土 交通省国土地理院,国土交通省関東地方整備局 霞ヶ浦河川事務所から貴重なデータを提供して頂 いた。ここに記して感謝の意を表す。なお,本研 究は文部科学省から特別電源所在県科学技術振興 事業補助金の交付を受けて実施した。

参考文献

- 茨城県生活環境部環境政策課(2007):第3 章湖沼環境保全対策の推進・第1節霞ケ浦 の総合的な水質保全対策,茨城県環境白書, 茨城県,78.
- 市川新(1999):地理情報システム(GIS) を用いた流域管理のあり方と今後の課題,シ

ステム / 制御 / 情報, 43, 8, 402-411.

- 国土交通省国土地理院(2005):流域自然環 境調査データ作成作業(霞ケ浦流域地区)報 告書.
- 4) 小尻利治, 東海明宏, 木内陽一(1998):シ ミュレーションモデルでの流域環境評価手順 の開発, 水文・水資源学会誌, 16, 5, 541-555.
- 5) 近藤純正 (1994):水環境の気象学,朝倉書 店,1-333.
- 6) 石岡百合子,東海明宏 (2006):河川流域に おける化学物質リスク評価のための産総研-水系暴露モデルの開発,水環境学会誌,29, 12,797-807.
- Lee, E.S. (1968) : Quasilinerization and Invariant Imbedding, Academic Press, 1-177.
- 8) 国松孝男,村岡浩爾 (1990):河川汚濁のモ デル解析,技報堂出版.
- 9) 平成 18 年度汚濁負荷量等実態把握調査報告
 書(2007):茨城県生活環境部環境対策課, 129-130
- 10)(財)農林統計協会:2000年世界農林業センサス,2000年農業集落カード(茨城県)
- 11)(財)経済産業調査会経済統計情報センター(2003):平成12年工業統計メッシュデータ
- 12) 茨城県霞ケ浦環境科学センター年報 (2006):
 GIS を用いた流域管理手法に関する調査研究, 2, 50-51.
- 13)田渕俊雄(2005):湖の水質保全を考える-霞ヶ浦からの発信,技報堂,151-168
- 14)田渕俊雄(2008):第5期霞ヶ浦水質保全 計画-その特徴と課題,用水と廃水,50, No1,p16
- 15) 根岸正美,岡野三郎(2004) 霞ヶ浦流入河 川の小流域における効果的な汚濁負荷量削減 対策,水処理技術, vol. 45, No2, 65-73
- 16) 根岸正美,山本哲也,坂本憲照(2002) 霞ヶ 浦の水質保全に向けた流域管理-地域エコシ ステムに基づく汚濁負荷量削減対策の評価 -,用水と排水,44,No 6,455-462.