霞ヶ浦における珪藻 Aulacoseira 属の細胞サイズの季節変化 1 - 1

桑名美恵子、長濱祐美、豊岡久美子、福田聡

Seasonal Variation in Cell Size of *Aulacoseira* in Lake Kasumigaura by Mieko KUWANA, Yumi NAGAHAMA, Kumiko TOYOOKA, and Satoru HUKUDA

キーワード: 西浦、北浦、アウラコセイラ、増大胞子、初生細胞

はじめに

霞ケ浦環境科学センター(以下「当センター」 という。) では、開設した 2005 年度から、霞ヶ浦 の水質変動要因の解明、および、植物プランク トンの優占機構の解明の調査研究のために、霞 ヶ浦湖内水質等モニタリング事業として、植物 プランクトンの調査を、水質調査と同時に実施 してきた(以下「モニタリング調査」という。)。 モニタリング調査における霞ヶ浦の植物プラン クトンの優占種の推移を表1に示した。

西浦では 2010 年 10 月から、Aulacoseira属の種 が優占種となることが多くなり、特に 2021 年度 は、12 か月中 9 回優占種となっていた。北浦で は、西浦ほどではないが、やはりAulacoseira属の 優占が2009年度から数多くみられている。

モニタリング調査で 2013 年度以降出現した Auracoceira 属の種は、小林弘珪藻図鑑1)および淡 水珪藻生態図²⁾等を参考に、Aulacoseira granulata (Aulacoseira granulata v. angustissima を含む。) (A.granulata), Aulacoseira ambigua (A.ambigua), および Aulacoseira distans の3種である。このう ち、Aulacoseira distans については、2017年に辻 らにより Aulacoseira pusilla 群として整理された 3) ため、本報告では、Aulacoseira pusilla 群 (A. pusilla 群) の名称を使用することとした。

Aulacoseira属は、珪藻綱中心目の植物プランク トンである。珪藻の増殖は、通常、無性的な二 分裂により起こるが、この過程で、新たに生じ

霞ケ浦の植物プランクトンカレンダー(総細胞体積からみた植物プランクトンの優占種) 表 1

(四浦・湖心)												
	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
2005年度	-	-	Nit	Act	Act	Act	Cry	Cycs	Cycs	Cycs	Cycs	Cycs
2006年度	-	Cycs	Cycs	Act	Cry	Act	Act	Act	Ste	Cycs	Nit	Nit
2007年度	Nit	Nit	Nit	Osc	Osc	Osc	Osc	Osc	Osc	Osc	Osc	Osc
2008年度	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas
2009年度	Plas	Plas	Mou	Mou	Plas	Plas	Plas	Plas	Plas	Plas	Plas	Plas
2010年度	Plas	Plas	Plas	Plas	Pseg	Pseg	Auls	Auls	Auls	Plas	Plas	-
2011年度	Plas	Plas	Plas	Plas	Mic 10	Cry	Tha	Tha	Aulp	Aulp	Syna	Aulp
2012年度	Cry	Pedb	Aulg	Aulg	Aula	Aula	Tha	Tha	Eug	Syna	Syna	Syna
2013年度	Stad	Pedd	Tha	Tha	Tha	Aulg	Tha	Eug	Aula	Per	Nit	Mon
2014年度	Syna	Aulg	Plas	Aulg	Aulg	Aulg	Aulg	Aulg	Aulg	Syna	Syna	Syna
2015年度	Cry	Plas	Plas	Aulg	Aulg	Aulg	Aulg	Aulg	Aulg	Ste	Ste	Per
2016年度	Cycl	Cycl	Cycl	Syna	Aulg	Aulg	Cycm	Cycm	Syna	Aulp	Aulp	Aulp
2017年度	Aulp	Syns	Ste	Syns	Aulg	Aulg	Aulg	Aulg	Ste	Aulp	Aulp	Syna
2018年度	Syna	Cycl	Gom	Aulg	Aulg	Tha	Cycm	Pseg	Gom	Ste	Aulp	Aulp
2019年度	Syna	Ste	Cycm	Cycm	Aulg	Aulg	Cycl	Cycst	Eug	Aulp	Aulp	Aulp
2020年度	Aulp	Cycl	Cycl	Cycl	Aulg	Cycl	Cycl	Cycl	Cycl	Cycl	Cycl	Aulp
2021年度	Aula	Chl	Aulg	Aulg	Aulg	VAC	Aulg	Cycm	Aulg	Aulp	Aulp	Aulp
2022年度	Aula	Aula	Aula	Per	Aulg	VAC	Stas	Eua	Ste	Aula	Aula	Aula
2023年度	Aula	Ste	Aulg	Aulg	Aulg	Cry	Aulg	Stas	Ste	Syns	Aulp	Aulp

(北浦・釜谷沖)												
	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
2005年度	-	-	Osc	Anabf	Mic 10	Act	Act	Cycs	Cycs	Syna	Syna	Syna
2006年度	-	Osc	Act	Act	Osc	Aulg	Act	Cycs	Cycs	Cycs	Ste	Nit
2007年度	Ste	Ste	Ste	Ste	Syna	Osc	Ste	Ste	Osc	Ste	Ste	Ste
2008年度	Plas	Plas	Plas	Plas	Plas	Auls	Plas	Plas	Plas	Plas	Plas	Plas
2009年度	Plas	Plas	Mou	Plas	Plas	Plas	Aulg	Auls	Aulg	Plas	Plas	Plas
2010年度	Plas	Plas	Plas	Plas	Aulp	Pseg	Aulg	Plas	Plas	Aulg	Ast	-
2011年度	Syna	Per	Cry	Mic 10	Aulg	Chl	Chl	Aulg	Ste	Per	Aulga	Per
2012年度	Mou	Aulg	Aulg	Aulg	Cry	Aulg	Aulg	Aulg	Cycm	Syna	Syna	Syna
2013年度	Stad	Stad	Aph	Plaa	Aulg	Plaa	Mou	Ske	Plaa	Plaa	Plaa	Syna
2014年度	Plas	Aulg	Cry	Aulg	Stas	Aulg	Aulg	Aulg	Ste	Ste	Syna	Plas
2015年度	Ste	Ste	Cry	Mic 10	Mici	Cry	Mou	Ste	Ste	Syna	Syna	Syna
2016年度	Syna	Syna	Cycl	Gom	Aulg	Aulg	Plaa	Aula	Cycl	Aulp	Aulp	Syna
2017年度	Syna	Plas	Plas	Plas	Aulg	Aulg	Plaa	Aulg	Cycm	Syna	Syna	Syns
2018年度	Syna	Plaa	ULO	Plaa	Pseg	Aulg	Aulg	Aulg	Aula	Aulp	Aulp	Aulp
2019年度	Syns	Gom	Plaa	Plaa	Aulg	Aulg	Aulg	Mou	Cycst	Aulp	Aulp	Aulp
2020年度	Aulp	Plaa	Cycl	Cycl	Cycl	Cycl	Aulg	Cycl	Cycl	Cycl	Cycl	Aulp
2021年度	Aula	Aulg	Stas	Pseg	Aulg	Aulg	Aulg	Cry	Aulg	Ste	Syns	Syns
2022年度	Nit	Ste	Ste	Mics	Pseg	Aulg	Aulg	Pedd	Ste	Chl	Aula	Syns
2023年度	Syns	Ste	Aulg	Per	Plas	Aulg	Pedb	Pedd	Ste	Ste	Ste	Chl

【凡例】		表記略称	種 名
		Aulg	Aulacoseira granulata
		Aulga	Aulacoseira granulata v. angustissima
		Aula	Aulacoseira ambigua
		Aulp	Aulacoseira pusilla 群
	珪	Auls	Aulacoseira spp.
	藻	Cycm	Cyclotella meneghiniana
	綱	Cycst	Cyclotella stelligera
		Cycs	Cyclotella spp.
		Cycl	Cyclostephanos spp.
		Ste	Stephanodiscus spp.
		Tha	Thalassiosira spp.

	表記略称	種 名
	Nit	Nitzschia spp.
role.	Syna	Synedra acus
珪藻	Syns	Synedra spp.
綱	Ast	Asterionella spp.
//973	Act	Actinocyclus spp.
	Ske	Skeletonema spp.
-7	Cry	Cryptomonas spp.
その	Per	Peridinium spp.
他	VAC	VACUOLARIACEAE
102	Eug	Euglena spp.

		SCHOOL LL.	
ı		Mici	Microcystis ichthyoblabe
ı		Mic10	Microcystis (10細胞以下の固まり)
ı		Mics	Microcystis spp.
ı	藍	Plans	Planktothrix suspensa
ı	色	Plaa	Planktothrix agardhii
ı	細菌	Osc	Oscillatoria spp.
ı	綱	Pseg	Pseudanabaena galeata
ı	41.3	Anaf	Anabaena flos-aquae
ı		Gom	Gomphosphaeria spp.
ı		Aph	Aphanocapsa spp.
•			

	表記略称	種 名
	Pedd	Pediastrum duplex
	Pedb	Pediastrum boryanum
	Mon	Monoraphidium spp.
緑	Stad	Staurastrum dorsidentiferum v. ornatum
藻	Stas	Staurastrum spp.
綱	Eua	Euastrum spp.
	Mou	Mougeotia spp.
	Chl	Chlamydomonas spp.
	ULO	ULOTRICHACEAE

た細胞のうち一方は、元の細胞よりもサイズが 縮小する。分裂を繰り返すことにより細胞サイ ズが縮小した細胞は、有性生殖をすることによ って、増大胞子を形成して、細胞サイズを回復 する4)されている。また、Aulacoseira属は、被殻 に連結針を有し、2以上の細胞が連結して、無 分岐の糸状の群体を形成しているものが多い。

モニタリング調査においては、種ごとの細胞 数や細胞の大きさについて調査を行ってきたが、 群体の大きさや、増大胞子の形成については、 報告されていなかった。現在の霞ヶ浦で優占種 となることの多いAulacoseira属の細胞サイズの季 節変動を調査解析することにより、Aulacoseira属 の増殖や優占機構の動態解明、ひいては霞ヶ浦 の水質の変動要因の解明の基礎的資料となるこ とが期待できる。

そこで、Aulacoseira属の群体サイズおよび増大 胞子形成の季節変動を明らかにするため、モニ タリング調査と同時に採取した湖水中の Aulacoseira属を、電子顕微鏡により、その群体サ イズ、および、調査時期に出現した増大胞子の 中にできる殻を持った初生細胞 (または初生殻) の観察・測定を行なった。

2 調査方法

(1) 採水地点と方法

採水は、2022年7月から2024年3月まで、モ ニタリング調査と同時に、月に1度の頻度で実施 した。採水地点は、西浦・湖心 (36°02′17″N、 140°24′15″E)、および北浦・釜谷沖(36°00′

図 1 調査地点

33" N、140° 34′ 10" E) の2地点(図1) を対象 とした。採水は、水面下 50 cmの湖水をペリスタ ルテッイクポンプで 1000 mL くみ上げ、実験室に 持ち帰り試料とした。

(2) Aulacoseira 属の観察方法

試料は、上水試験法解説編5を参考に、ポリカ ーボネート製のフィルター(ADVANTEC 製、 POLYCARBONATE MEMBRANE FILTER, Pore size 0.4 μm、直径 47 mm) で、50 ml をろ過し、乾 燥器により 110 ℃で約 30 分間乾燥させた。この フィルターを中心部から 10 mm×12 mm程度を切り 取り、導電性カーボンテープにより試料台に接 着したものを観察標本とし、走査型電子顕微鏡 (JCM-7000、JEOL) により観察し、フィルター 上に捕集した Aulacoseira 属のサイズを測定した。

電子顕微鏡によるAulacoseira属の群体サイズの 測定は、まず倍率500倍で観察し、その視野の中 で、直径の大きいものまたは群体長の長いもの を選定したのち、個別に拡大観察して、直径及 び群体の長さを測定した。なお、測定群体数は、 1試料あたり30群体以上とした。

また、初生細胞(または初生殻)については、 試料台のろ紙全体を倍率200倍で観察し、個体を 観察したのち、個別に拡大して、初生細胞およ び母細胞の直径を測定した。

(3) Aulacoseira 属の測定群体数

電子顕微鏡で観察したAulacoseira属の群体は、 前述の小林弘珪藻図鑑および淡水珪藻生態図鑑 等を参考にA.granulata、A.pusilla群、A.ambiguaの 3種に区分した。さらに、A.granulata について は、細い細胞の群体(A.granulata v.angustissimaと 推定されるもの)とそれ以外の2種に、

A.ambiguaについては、その形状から、直線形、 円弧形および螺旋形の3種に、それぞれ区分し て、結果を取りまとめた。

測定群体数は、別表1のとおり、西浦・湖心 が762群体、北浦・釜谷沖が772群体であった。

なお、Aulacoseira属3種6区分の代表的な群体 を 別図1に示した。

(4) 群体サイズの測定方法

図2に、Aulacoseira属の群体のサイズの測定箇 所を示した。群体の長さは原則として500倍以上、

直径は1000倍以上の倍率で測定を行なった。直 径は、1群体あたり3か所以上で測定を行ない、 その平均値として求めた。1細胞の長さは、群 体の長さを細胞数で除して求めた。なお、螺旋 形のA.ambiguaについては、その形状から群体長 を計測することが難しいため、1細胞の長さを 測定し、細胞数を乗ずることでその群体長とし た。

3 結果と考察

(1) 細胞の直径と長さの関係

野外から採取した標本(自然集団)では、相 当数の細胞の直径や長さを測定したときには、 それぞれにばらつきがあったとしても、連続的 に一定範囲内に収まっていれば、細胞に大小の 差はあっても同じ種と考えられる 6)。 霞ヶ浦から 採取された Aulacoseira 属について、種ごとの細 胞の直径と1細胞の長さについて検討を行った。

1 A.granulata

図3に、A.granulataの直径と1細胞の長さの関 係を採取地点(西浦・湖心、北浦・釜谷沖)ご とに示した。

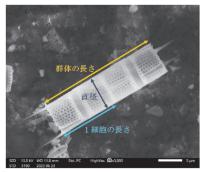
A.granulataのうち、細い群体として区分された ものは、直径が2.0~3.2 μmで安定していたのに 対して、1細胞の長さは13.2~44.5 µmと大きく 変化していたが、直径の変動が小さいことから、 それ以外のA.granulataと別のグループ (Aulacoseira granulata v. angustissima) として、 区分することが妥当であることが示唆された。

それ以外の A.granulata は、直径は 3.1~24.2 μm、 1細胞の長さは 6.8~35.1μm と、大きく変化して いた。『ダム湖の植物プランクトン簡易同定チェ

ックリスト』(辻ら(2022)⁷⁾)(以下「チェックリ スト」という。) に記載されているサイズ(直径 3~21μm、殻高 5~18μm) よりも、直径が大きい ものや、1細胞の長さ(殻高に相当)が長いも のが存在していた。

②A.pusilla 群

図4に、A. pusilla 群の直径と1細胞の長さの関 係を採取地点ごとに示した。


A.pusilla 群は、直径は $3.9 \sim 7.7 \, \mu m$ であり、 1細胞の長さは $4.6\sim10.5\mu$ m と、A.granulate と比 べて、狭い範囲に集中していた。チェックリス トに記載されているサイズ(直径: 6~10μm)と 比較して、直径が小さいものが存在し、直径が8 ~10 µm の細胞は確認されなかった。

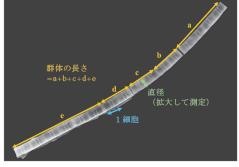

(3) A. ambigua

図5に、A.ambigua の直径と1細胞の長さの関 係を採取地点ごとに示した。

A.ambigua については、A.pusilla 群よりも、直 径が細く、その直径は 2.0~5.7 μm の範囲内であ り、特に、4 μm を中心とした狭い範囲に多くが 集中していた。一方で、1細胞の長さは 6.8~ 32.4 μm であり、変化が大きかった。チェックリ ストに記載されている大きさ(直径 4~17 μm、 殻高 5~13 μm) と比較して、直径が小さいもの のみが確認された。また、1細胞の長さはチェ ックリストよりも長いものも多く確認された。

なお、直線形、円弧形および螺旋形の3区分 に分けて検討したが、明確な差は見られなかっ

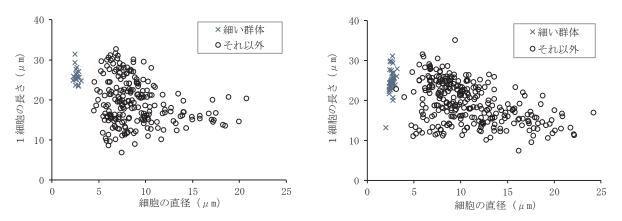
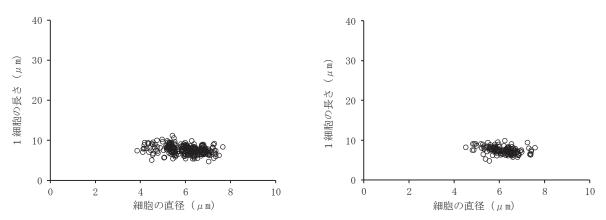
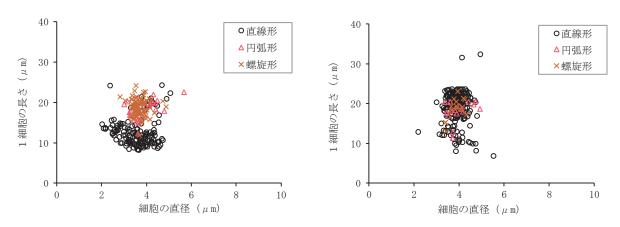




図 2 Aulacoseira のサイズの測定箇所


左; A. granulata、中央; A. pusilla 群、右; A. ambigua (螺旋形)

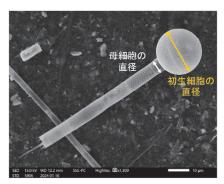
A.granulata の直径と 1 細胞の長さの関係 (左;西浦・湖心、右;北浦・釜谷沖) 図3

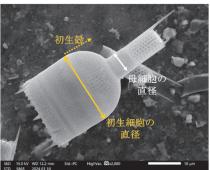
A.pusilla 群の直径と1細胞の長さの関係(左;西浦・湖心、右;北浦・釜谷沖) 図 4

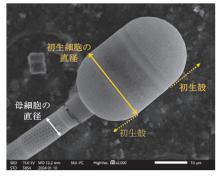

A.ambigua の直径と 1 細胞の長さの関係(左;西浦・湖心、右;北浦・釜谷沖) 図 5

(2) 初生細胞の計数および計測結果

霞ヶ浦では、図6に示したように、光学顕微 鏡によるプランクトン観察において、初生細胞 や初生殻が観察されることがある。本調査にお いては、表2のように A.granulata の初生細胞ま たは初生殻を含む個体が、2022年8月17日には 西浦・湖心および北浦・釜谷沖の両地点で、


2023年8月3日には、西浦・湖心のみで確認され た。特に、2022年8月17日の西浦・湖心では、 29 個体と多くの細胞を確認した。この時の初生 細胞および初生殻の細胞数密度を、ろ過水量、 観察したろ紙面積等から求めると、1.9 cells/mlと なった。モニタリング調査において、この時の A.granulata の細胞数密度は、4,300 cells/ml であり、





初生設および母細胞が存在する群体の光学顕微鏡写真 ※母細胞の形状より、左及び中央は A.granulata、右は A.ambigua と推定

初生細胞および母細胞の直径の測定箇所 図 7

表 2	初生細胞および母細胞の測定結果

地点名	試料採取日		初生細胞	4年 夕	初	生細胞の直	うち母細胞	母細胞の直径			
地点名	武科採取日	ろ紙片数	の個体数※1	個体数※1 種名 平均 最大 最小		最小	付き個体数	平均	最大	最小	
西浦・湖心	2022年8月17日	3	29	A. granulata ^{*2}	20.5	25.6	14. 6	19	6. 1	7. 2	5. 3
北浦・釜谷沖	2022年8月17日	4	17	A. granulata	21.7	24.9	19. 3	3	7.3	7.4	7. 1
北浦・釜谷沖	2022年10月15日	2	1	A. granulata	21.8	J	_	0	J	J	_
西浦・湖心	2023年5月19日	2	9	不明	9. 0	8.3	9. 5	0	J	J	<u> </u>
西浦・湖心	2023年6月19日	2	1	不明	8. 9	J	_	0	ĺ	ĺ	_
西浦・湖心	2023年8月3日	2	4	A. granulata	22.0	23.9	20. 1	4	8.1	10.7	6.6
計			61					26			

- ※1 初生細胞または初生殻が確認できる個体の数。
- ※2 初生細胞のみのため、A. granulataと判定できないものも存在する。

これと比較すると、初生細胞等の細胞数は非常 に少なく、光学顕微鏡による観察では見つけに くいことが明白である。

A.granulata の初生細胞または初生殻において、 母細胞が残っている個体が、西浦・湖心では 2022年8月17日と2023年8月3日、北浦・釜谷 沖では2022年8月17日の計3回の調査において、 26 個体確認された。それらの個体の母細胞の直 径と、初生細胞の直径の関係を図8に示した。 霞ヶ浦の A.granulata は、母細胞の直径が 5~10 μm程度まで細くなったときに、直径 15~25 μm (母細胞の直径の2.1~3.8倍)の初生細胞が形成 されることが判明した。

一方で、2023年5月19日および6月19日の西 浦・湖心で観察された初生細胞または初生殻を 含む個体は、A.granulata の特徴である長い刺が 確認されなかったので、A. pusilla 群または A.ambigua と推定されるものの、同定するには至 らなかったので、種不明とした。これの初生細 胞の直径は 8.3~9.0 μmであり、A.granulata のも のと比べて、1/2以下であった。

なお、2022年8月17日の西浦・湖心で観察さ れた A.granulata の母細胞つきの初生細胞または 初生殻を含む個体のうちの一部を 別図2に示し た。

(3) Aulacoseira 属の群体サイズの季節変化

Aulacoseira属の群体サイズの季節変化を、以下 に、種ごとに記載する。

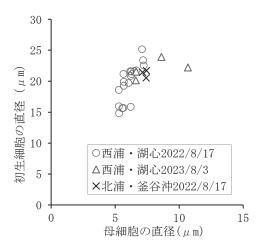


図 8 A.granulata における母細胞の直径と 初生細胞の直径の関係

(1) A.granulata

図9に A.granulata の直径、図10 に群体の長さ の季節変化を示した。

A.granulata については、西浦・北浦ともに、 2022年は8月から12月まで、2023年は6月から 12月まで、直径 15 µm以上の群体が観察された。 前述したように、直径 15 μm 以上の初生細胞が 8 月に確認されており、直径が大きくなるような 変化は、8月を中心として増大胞子が形成されて いた結果であると考えられる。

A.granulata の群体の長さは、直径が大きくなる 時期と同時期に長くなる傾向がみられ、2022年 は8月から12月、および、2023年は6月から12 月に、100 μm 以上の長い群体が確認された。

A.granulataは、このように直径が大きく群体長 が長くなる季節に優占種となる場合があり、表 1 に示したように、西浦では、2022 年 8 月、2023 年6、7、8、10月に、北浦では、2022年8、9月、 2023年6、9月に優占種となっていた。

② A.pusilla 群

図 11 に A.pusilla 群の直径、図 12 に群体の長さ の季節変化を示した。

A.pusilla 群の直径については、明確な季節変化 は見られなかった。これは、(2)で種不明とした 初生細胞の直径が最大でも 9.0µmであったように、 増大胞子が形成されても、A.pusilla 群の初生細胞 の直径は、A.granulataのものと比較して小さいた め、直径のサイズ変化が季節変化としてとらえ られなかったものと推察される。

一方で、A.pusilla 群の群体の長さについては、 西浦・湖心および北浦・釜谷沖ともに、1月か ら3月に長いものが増える傾向がみられた。確認 された数は少ないものの、100 μm 以上の長い群 体の存在も確認された。

この群体の長さが長くなる季節に、A.pusilla 群 は優占種となる場合があり、表1に示したように、 西浦では、2024年2、3月に優占種となっていた。

3 A.ambigua

図 13 に A.ambigua の直径、図 14 に群体の長さ の季節変化を示した。

A.ambigua の直径については、A.pusilla 群と同 様に明確な季節変化は見られなかった。これは、 A.pusilla 群と同様に、増大胞子が形成されても、

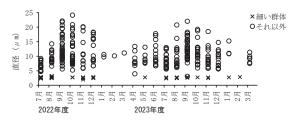
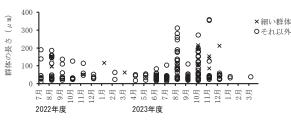



図 9 A. granulata の直径の季節変化(左;西浦・湖心、右;北浦・釜谷沖)

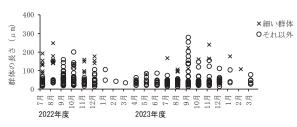
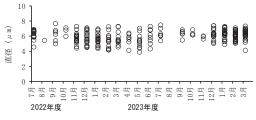
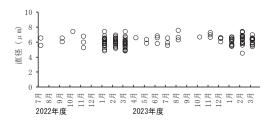
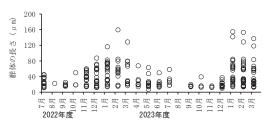





図 10 A. granulata の群体の長さの季節変化(左;西浦・湖心、右;北浦・釜谷沖)

A. pusi / la 群の直径の季節変化(左;西浦・湖心、右;北浦・釜谷沖) 図 11

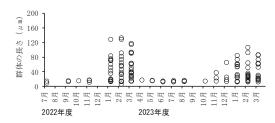
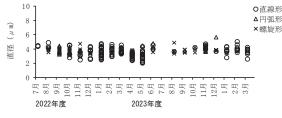



図 12 A. pusi//a 群の群体の長さの季節変化(左;西浦・湖心、右;北浦・釜谷沖)

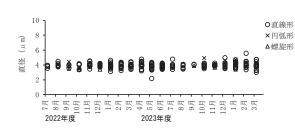
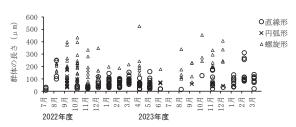
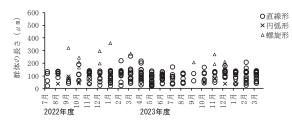




図 13 A. ambigua の群体の直径の季節変化(左;西浦・湖心、右;北浦・釜谷沖)

A.ambigua の群体の長さの季節変化(左;西浦・湖心、右;北浦・釜谷沖) 図9~14において、1つのマーカーは、1つの群体を表す。

直径のサイズ変化が季節変化としてとらえられ なかったものと推察される。

また、A.ambigua の群体の長さについては、 200 µm 以上の長い群体の存在がみられることが あるものの、季節変化は明確でなかった。

4 結論

霞ヶ浦の Aulacoseira 属について、電子顕微鏡 観察により、群体サイズの測定、および調査期 間に出現した初生細胞等の計数やサイズ測定を 実施した結果,以下の知見が得られた。

- ・A.granulata は、 $6\sim10$ 月に直径が大きなもの が出現し、また、同時に群体の長さも長くなり、 優占種となる場合もあることが確認された。
- ・A.granulataの初生細胞は8月に観察され、その 大きさは、母細胞の直径 5~10 µmに対して、直 径 15~25 µm (母細胞の直径の 2.1~3.8 倍) であ
- ・A.pusilla 群と A.ambigua については、直径の季 節変化が観察できなかった。これらは、増大胞 子が形成されても、初生細胞の直径は、 A.granulata のものと比較して小さいため、直径の サイズ変化が季節変化としてとらえられなかっ たものと推察される。
- ・A.pusilla 群は、1月から3月に群体長が長いも のが増える傾向がみられ、その季節に優占種と なる場合があることが確認された。

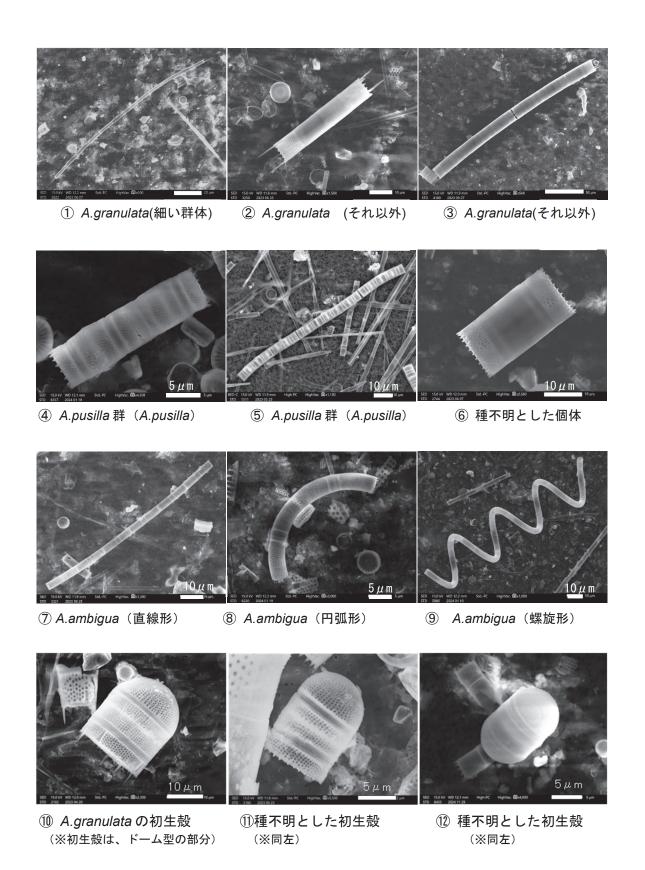
謝辞

Aulacoseira属の増大胞子及び初生細胞について、 納谷友規氏(産業技術総合研究所地質情報研究 部門平野地質研究グループ研究グループ長、元 当センター流動研究員)から、最初に貴重な情 報をいただき、本調査を始めるきっかけとなっ た。また、霞ヶ浦水質モニタリング及び植物プ ランクトンモニタリングは、木村夏紀氏ほか多 くの職員の尽力によって継続している。さらに、 電子顕微鏡については、大気・化学物質研究室 の石綿測定用の機器を借用させていただき、使 用にあたっては木村龍成氏に協力をいただいた。 ここに記して謝意を表す。

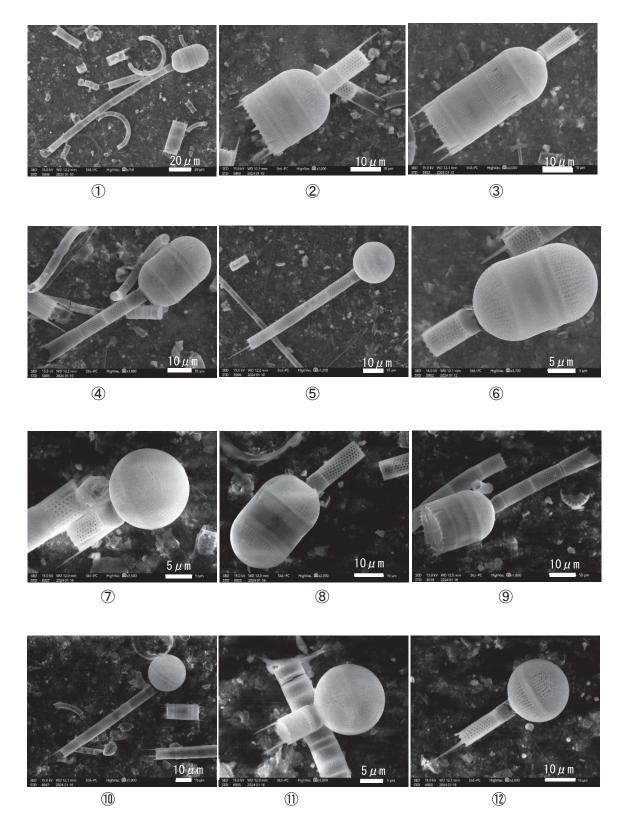
参考文献

- 1) 小林弘・出井雅彦・真山茂樹・南雲保・長田 敬五,2006,『小林弘珪藻図鑑 第1巻』,内 田老鶴圃
- 2) 渡辺仁治, 2005, 『淡水珪藻生態図鑑 群集 解析に基づく汚濁指標 DAIpo, pH 耐性能』, 内田老鶴圃
- 3) 辻彰洋・一柳英隆、「ダム湖のモニタリング において同定上の注意を要する種 1. 珪藻」、 一般財団法人水源地環境センター平成 29 年 度環境技術研究所所報
- 4) 国立科学博物館 HP、標本・資料データベー ス、プランクトンと微化石、いろいろな微化 石 (珪藻)
 - URL.https://www.kahaku.go.jp/research/db/botan y/bikaseki/2-keiso.html (2024年10月時点)
- 5) 上水試験法解説編,2001年版,日本水道協会
- 6) 山岸高旺、1999. 『淡水藻類入門淡水藻類の 形質・種類・観察と研究』、pp509-511. 株式 会社内田老鶴圃、東京
- 7) 辻彰洋・新山優子、『ダム湖の植物プランク トン簡易同定チェックリスト』、国立科学博 物館、2022年3月22日改訂版

URL.https://www.kahaku.go.jp/research/db/botan y/microalgae/dam/(2024年8月時点)


別表 1 測定個体数

西浦·湖心


試料採取目		A. granulata		4:II #¥		A. ambigua		種不明	計
武科採取日		細い群体	それ以外	A. pusilla 群		直線形	円弧形・螺旋形	性个明	₹T
2022年7月29日	12	0	12	16	3	3	0	0	31
2022年8月17日	28	6	22	1	9	3	6	3	41
2022年9月15日	8	0	8	6	22	0	22	0	36
2022年10月15日	10	0	10	3	21	4	17	0	34
2022年11月9日	4	1	3	17	16	4	12	0	37
2022年12月9日	4	0	4	20	14	7	7	0	38
2023年1月13日	1	1	0	22	27	26	1	0	50
2023年2月9日	2	0	2	14	17	15	2	0	33
2023年3月8日	1	1	0	11	18	15	3	0	30
2023年4月10日	3	0	3	7	22	16	6	0	32
2023年5月19日	5	0	5	11	18	16	2	0	34
2023年6月19日	23	0	23	8	6	2	4	0	37
2023年7月12日	26	0	26	6	0	0	0	0	32
2023年8月3日	29	1	28	0	6	1	5	0	35
2023年9月14日	20	1	19	7	5	0	5	0	32
2023年10月24日	34	6	28	4	4	1	3	0	42
2023年11月13日	20	3	17	3	17	6	11	0	40
2023年12月5日	9	1	8	18	6	1	5	0	33
2024年1月16日	2	0	2	26	8	7	1	0	36
2024年2月8日	0	0	0	31	10	10	0	0	41
2024年3月2日	1	0	1	29	8	8	0	0	38
合 計	242	21	221	260	257	145	112	3	762

北浦·釜谷沖

北州"金台冲										
試料採取日		A. granulata		4:11 TIY		A. ambigua		種不明	計	
八村休以口		細い群体	それ以外	A. pusilla群		直線形	円弧形・螺旋形	性小り	П	
2022年7月29日	30	15	15	2	4	4	0	0	36	
2022年8月17日	20	7	13	0	10	9	1	1	31	
2022年9月15日	39	0	39	2	7	3	4	0	48	
2022年10月15日	31	2	29	1	10	5	5	1	43	
2022年11月9日	18	5	13	3	17	15	2	0	38	
2022年12月9日	18	3	15	0	12	9	3	0	30	
2023年1月13日	2	0	2	18	19	18	1	0	39	
2023年2月9日	1	0	1	18	18	18	0	0	37	
2023年3月8日	1	0	1	23	18	17	1	0	42	
2023年4月10日	9	0	9	1	20	19	1	0	30	
2023年5月19日	8	1	7	2	23	23	0	0	33	
2023年6月19日	13	0	13	3	20	19	1	0	36	
2023年7月12日	23	3	20	3	9	9	0	0	35	
2023年8月3日	23	6	17	3	8	8	0	0	34	
2023年9月14日	37	2	35	0	3	2	1	0	40	
2023年10月24日	22	1	21	1	12	10	2	0	35	
2023年11月13日	18	2	16	3	14	10	4	0	35	
2023年12月5日	13	0	13	4	15	11	4	0	32	
2024年1月16日	4	1	3	14	21	19	2	0	39	
2024年2月8日	1	1	0	20	18	18	0	0	39	
2024年3月2日	6	0	6	15	19	19	0	0	40	
合 計	337	49	288	136	297	265	32	2	772	

別図1 Aulacoseira 属の電子顕微鏡写真

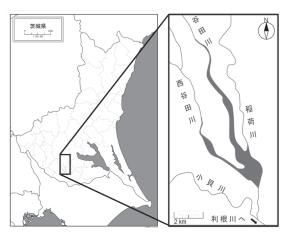
別図2 西浦・湖心の2022年8月17日に採取した試料に確認された 初生細胞(または初生殻)のうち母細胞が確認できるものの一部 ※①~⑦については、SEM 観察の前にカーボン蒸着を実施している。

1-2 牛久沼水質予測に向けた簡便なシミュレーションモデルの構築

長濱祐美、淺見真紀*、小泉知義**、森田雅子**、深谷惇志**、 湯澤美由紀***、嘉成康弘****、古米弘明*****

Development of a Simplified Simulation Model for Water Quality in Ushikunuma Lake, by Yumi NAGAHAMA, Maki ASAMI, Tomoyoshi KOIZUMI, Masako MORITA, Atsushi FUKAYA, Miyuki YUZAWA, Yasuhiro KANARI, Hiroaki FURUMAI

キーワード: タンクモデル、水質モデル、効果検証、対応方針策定


1 はじめに

牛久沼は、茨城県南地域に位置する湖面積 6.52 km²、平均水深 1 m の、ごく浅い小さな湖である。谷 田川、西谷田川および稲荷川の3河川から牛久沼に 流入してきた水は、小貝川を経て利根川に流下する (図1)。2005年のつくばエクスプレス線の開通に伴い、 谷田川流域にはつくば市、西谷田川流域にはつくば みらい市が含まれ、急速に都市化が進みつつあり、 今後も人口増加が見込まれている。これまでの研究 によれば、流域の都市化に伴う田畑の減少や下水 道整備により、流入河川における COD、TN、TP 濃度は減少してきているものの、湖内水質は横ば いである。また、牛久沼の COD は湖内のクロロ フィル a (Chl.a) との関係も強く、内部負荷の影響 が大きいり。そのために、流入負荷量の減少が直 接的に湖沼水質の改善につながりにくく、流入負 荷削減のための各種対策の効果予測が難しい。

茨城県は、牛久沼の水質保全を図るため1975年 に河川の環境基準をあてはめたが、1999年には滞 留時間 17 日間であることから湖沼利用目的の適応 性が水産3級および農業用水である湖沼B類型に 変更された。そして、環境基準項目を達成するた めに段階的に水質の改善を図ることとし、2002年 度に第1期牛久沼水質保全計画を策定し、5年に 一度見直しを行うことで、計画に基づく各種対策

を実施してきたが、環境基準の達成にはまだ至っ ていない。

水質改善を目的とした施策や対策の効果を評 価するため、水質のシミュレーションモデルが活 用されていた。一般的に、水質予測を目的とした 多くのシミュレーションモデルは複雑で、使用に は専門的な知識などが必要となり、行政担当者が 直接活用することは困難である。これまでの水質 保全計画策定に使用された水質シミュレーショ ンモデルについても同様であった。しかしながら、 行政担当者が直接モデルを使用することができ れば、対策の効果を評価しながら施策を検討する ことが可能となり、効果的かつ効率的な水質保全 対策の実施につながることが期待できる。

牛久沼概略図 図 1

^{*} 茨城県・環境対策課(現・茨城県県南県民センター)

^{**} 日本ミクニヤ(株)

^{***} 茨城県・霞ケ浦環科セ (現・茨城県保健政策課)

^{****} 茨城県・環境対策課

^{*****} 中央大学

2022 年度には、第5期牛久沼水質保全計画に代 わり、「牛久沼水質保全の対応方針」が策定される こととなった。そこで、この対応方針策定に向け、 行政担当者が、水質保全対策の効果を随時評価で きるよう、牛久沼を対象とした簡便な水質シミュ レーションモデル (以下、牛久沼モデル) の構築 を試みた。そして、施策の効果の評価を行った。

2 牛久モデルの構築方法

(1)モデルの構造

牛久沼モデルの構造を図2に示す。これまでの 牛久沼水質保全対策としては流入負荷量の削減 に関するものが多いことから、負荷量削減に伴う 湖内水質 (COD・TN・TP・Chl.a) の改善効果を評 価できること、かつ、行政活用を促進させるため に簡便に使用できることを重要視した。

流入負荷量は、流域の土地利用状況と河川流量 が重要な要因である。しかし牛久沼流入河川の連 続観測流量が存在しなかったことから、日本ミク ニヤ (株)の「流出シミュレーション タンクモデ ル」2)を改変して、土地利用別にパラメータを設定 し(図3および表1)、時間降水量から河川流量を 算出する形とした。そして、流入負荷量算定には、 L-Q式 を用いて流入河川ごと、平常水と降水時に 分けてパラメータを調整した(表2)。

$$L = aQ^b \qquad \cdots (4)$$

L: 負荷量 (L: g/s) *Q*: 流量 (m³/s)

a:係数(表2に示す通り) b:指数(表2に示す通り)

なお、降雨時とは、3河川の合計流量が10 m³/s を超えたときと定義した。また、流量が最も小さ い稲荷川については、隣接する谷田川に流量を合 算して負荷量を計算した。

牛久沼の水質モデルには、日本ミクニヤ (株)の 「水質シミュレーション BOX モデル」²⁾を改変 して用いた(図4)。牛久沼は、その形状を鑑み、 谷田川及び西谷田川の流入部、沼本体の3ブロッ クに分けた。そして、谷田川と西谷田川から流入 負荷は、各流入部ブロックを通じて沼本体ブロッ クへ流入する 2 段形状とした (図2)。牛久沼は

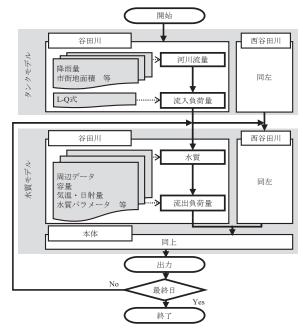


図2 牛久沼モデルの全体構造

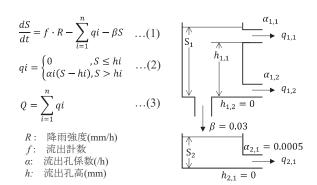


図3 タンクモデルの模式図および式

表 1 タンクモデルのパラメータ

パラメータ		森林他	畑	水田	市街地
1	$\alpha_{1,1}$	0.0120	0.0116	0.0046	0.2500
段	$h_{1,1}$	40.0	40.0	80.0	20.0
目	$\alpha_{1,2}$	0.008	0.009	0.002	0.080

平均水深 1m と浅いためによく混合することから、 各ブロックは鉛直1層とし、沼の水位変化を無視 して湖容積は一定とした。牛久沼の水質へ与える 植物プランクトンの影響が大きいことから、植物 プランクトンは水温等の応答が異なる3種を想定 し、そのほか動物プランクトン、デトリタス、溶 存態物質を考慮し、それぞれを計算した。底泥は 境界条件扱いとし、温度条件によって溶出量を計 算した。計算期間は4月1日からの1年間とし、 30日間の助走期間を設けた。出力は1日ごととし

た。

入力条件は、時間降水量 (mm/h)、日平均気温 (°C)、日合計全天日射量 (MJ/m²) のほか、土地利 用区分として谷田川・西谷田川・稲荷川それぞれ の流域における畑地、水田、市街地、森林他の面 積とした。また初期水質として、COD (mg/L)、TN (mg/L)、TP (mg/L)、Chl.a (mg/L)、動物プランクト ン (mg-C/L)を与えた。

(2) 牛久沼モデルの再現性評価

モデルによる水質再現性の評価は、公共用水域 水質測定結果または霞ケ浦環境科学センターの 定期調査結果 (以下、実測値) とモデル計算値と の比較によって行った。過去の水質保全計画の報 告書等においては、牛久沼流域における各土地利 用の面積が整理されている(図5)。本モデルの目 的は、水質改善を目的とした施策や対策の効果を 評価することであるため、土地利用及び土地利用 毎の排出負荷量の変化を反映して計算できるこ とが必要となる。そこで、計算値と実測値との比 較は、流域の土地利用面積のデータが整理されて いる、2002、2006、2011、2016、ならびに2021年 度の5年について行った。なお、水質項目は、環 境省の水質汚濁に係る環境基準水位域の類型指 定項目である COD、TN、TP のほか、COD に大き く影響するとされる Chl.a について比較した。統 計的処理には R (var.4.3.0)を用い、データの正規性 は K-S test で確認した。その後、正規分布に従う データについては t-test を用いて平均値の差を判 断し、Pearson の相関検定を行って相関性を判断し た。

(3) 水質保全・改善対策効果のシナリオ

各種対策の水質保全・改善対策効果を検討する ため、3パターンの対策シナリオを想定して、5年 間継続することを想定した将来水質予測を実施 した。つまり、①現状の対策を維持したケース (以 下、維持ケース)、②下水道・排水施設の生活系、 事業系および畜産系などから受ける点源負荷の 対策を実施したケース (以下、点源ケース)、③田 畑・山林や市街地などから受ける面源負荷の対策 を実施したケース (以下、面源ケース)とした。

これらのケース計算結果を、2021年の土地利用 および気象を用いた計算結果(以下、現況)と比 較して、それぞれの対策ケースが持つ保全・改善

表 2 L-Q 式のパラメータ

	項目	谷田	川田	西谷田川			
	供日	a b		a	b		
717	COD	3.7740	1.1063	4.8599	0.9553		
平水時	TN	2.0253	1.0383	2.3691	0.9827		
叶	TP	0.0599	1.1137	0.0699	0.9017		
	COD	6.0843	1.1098	9.6231	1.3683		
	d-COD	4.4314	1.0076	4.3166	1.0377		
降水	TN	1.3259	1.0499	1.9115	1.2757		
水時	d-TN	1.0380	1.1025	1.3700	0.8977		
	TP	0.0927	1.2436	0.1749	0.6036		
	d-TP	0.0333	1.0512	0.0359	1.0547		

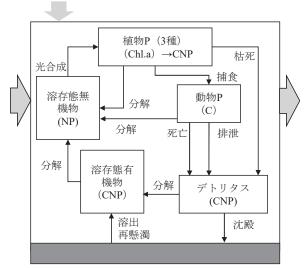
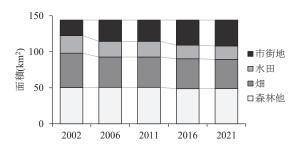



図 4 水質モデルの模式図

牛久沼流域における土地利用の変化 図 5

表3 現況と将来予測の土地利用面積

(km ²)	現況	将来予測
市街地	36.1	37.0
水田	18.5	18.2
畑	40.2	39.9
森林他	49.3	48.9

対策の効果を検討した。なお、一般的に平水時で は点源から、降雨時は面源からの流入が卓越する と考えられることから、降雨が 10 m³/s 以下の場 合の負荷量を10%減じたものを点源ケース、降雨 が 10 m³/s 以上の場合の負荷量を 10%減じたもの を面源ケースとして計算した。

将来予測計算は、土地利用と気象の予測値を用 いて行われた。土地利用の予測値は、茨城県生活 排水ベストプラン 3)を参照して作成した表3の値 を用いた。気象の予測値は、2000年から2022年 までの気象から、平年値と異なる特徴的な気象を 抜粋し、モデル気象として用い、それらの平均値 を将来予測値として用いた。モデル気象は、6~8月 の月平均気温が最も高かった 2010 年度を暑夏、 最も低かった 2003 年度を冷夏として用い、さら に、年間合計降水量が最も多かった 2004 年度を 多雨、最も少なかった 2018 年度を少雨として用 いた(図7)。

3 牛久沼モデルの評価

構築したモデルは、入力条件のうち、データ数 の多い降水量、日平均気温、日合計全天日射量を、 気象庁ウェブサイト 4よりダウンロードした形の まま入力できる形式としたため、モデル計算のた めのデータ整理の必要がほとんどなく、簡便化を 図ることができた。また、このモデルは Microsoft Excel のマクロ機能を用いて構築されており、通 常業務用に支給されているノートパソコン型端 末で十分に扱うことができた。さらに、1年間分 の計算時間は1分未満と短かった。これらのこと から、構築したモデルが、運用目的に適した簡便 なモデルであることが示された。

次に再現性の評価を行った。土地利用面積が異 なる年度における、COD、TN、TP、Chl.aの計算 値と実測値を比較した(図8)。その結果、土地利 用面積の変化にも関わらず、各年度の年度平均 COD、TN、TP、ならびに Chl.a の計算値は実測値 とよく一致し、実測値との差は COD で 3.6%, TN で10.8%、TPで14.2%、Chl.aで4.4%と、いずれ も 15%未満であった (N=12, p>0.05)。このこと から、本モデルは、過去の水質状況を、土地利用 状況の変化を反映して再現できていると評価で きた。

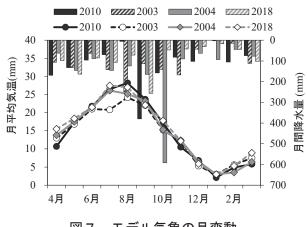
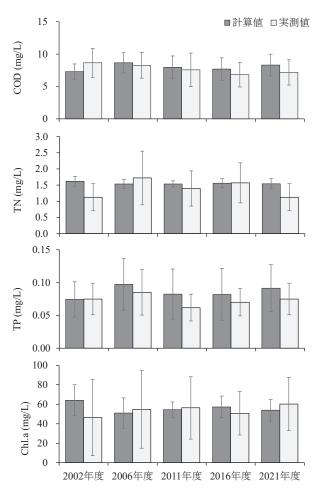



図 7 モデル気象の月変動

月平均水質 (N = 12) の計算結果と実測値 の比較。エラーバーは標準偏差を示す。

4 水質保全・改善対策の評価

3パターンの対策を想定した将来予測を行い、 各モデル気象で計算された平均 COD 値を、現況 ケースで計算して算出された値と比較した(図

9)。その結果、いずれも現況より低い値となった。 維持ケースにおいて、現況より低い値となった 理由としては、田畑面積の減少が見込まれている ためと推察された。一方で、多雨のモデル気象で 計算された年平均 COD は 8.5 mg/L となり、現況 の 8.3 mg/L よりも高くなった (図 10)。このこと は、維持ケースでは、気象条件によっては現況よ りも年平均 COD 濃度が増加する可能性を示して いる。

負荷量を 10%減少させた点源ケースおよび面 源ケースは、現況や維持ケースに比べて平均 COD の低下が見られ、いずれのモデル気象による計算 結果も現況を下回った。両ケース間の差はほとん ど認められなかったが、負荷量を50%減少させた 場合には、点源ケースに比べて、面源ケースで平 均 COD がより低下することが確認された。この 結果は、点源負荷対策よりも面源負荷対策のほう が、将来的に水質のさらなる改善をもたらす可能 性を示唆していると考えられる。

また、いずれのケースにおいても、多雨のモデ ル気象で計算された年平均 COD が最も高くなり、 少雨のモデル気象で計算された年平均 COD が最 も低い値となった(図10)。牛久沼モデルの流入 負荷量は LO 式を用いて計算されており、これは 河川流量に依存している。このため、降雨による 流量の増減が流入負荷量の変化に大きく影響し、 その結果として、COD の計算結果が年間降水量に 影響を受けていたと考えられた。実際、牛久沼に おける 2000 年から 2022 年までの年間合計降水量 と年平均 COD との間には有意な負の相関関係が 確認された(N=23、r=-0.47、p<0.05)。このこと は、牛久沼モデルが実際の環境をうまく再現でき ていることを示唆しており、将来予測の計算結果 の妥当性を補完していると考えられた。

5 まとめ

牛久沼流域の水質保全対策が、牛久沼の水質改 善へ与える効果を推定し、また対策効果の検討及 び評価を行うため、行政担当者でも運用可能な簡 便な水質シミュレーションモデルの構築を試み た。土地利用状況の変化を反映した流域負荷量の 算定のためにはタンクモデルと L-Q 式を、湖沼水 質計算には BOX モデルを組み合わせた構造とし た。モデルパラメータの調整を行うことで、2002、

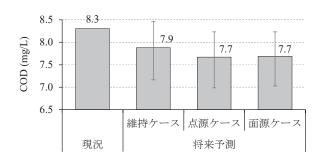


図9 現況と将来予測の計算結果。エラーバー はモデル気象の計算結果における最大値と最小 値を示す。

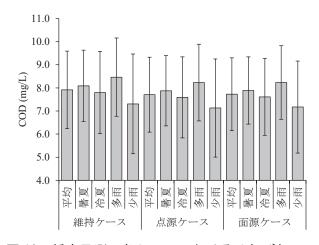


図 10 将来予測の各ケースにおけるそれぞれの モデル気象の計算結果。エラーバーは標準偏差 を示す (N = 12)

2006、2011、2016、ならびに 2021 年度の 5 年分の 水質状況を再現できた。

再現性を確認できた牛久沼モデルを用いて、水 質保全・改善対策の評価を行った結果、現状を維 持した場合においても、田畑面積の減少に伴い水 質の改善が期待できることが明らかとなったが、 気象によっては悪化する可能性も示唆された。ま た、点源や面源からの負荷量削減対策の効果がそ れぞれ定量的に示され、点源負荷対策よりも面源 負荷対策のほうが、将来的に水質のさらなる改善 をもたらす可能性を示唆する結果が示された。

参考文献

1) 長濱祐美、木村夏紀、湯澤美由紀、福島武彦、 2022. 牛久沼における流域都市化の影響と近年の 水質変動要因. 土木学会論文集 G(環境) 78(7)、

253-262.

- 2) 日本ミクニヤ(株) シミュレーション:
- https://www.mikuniya.jp/technology/simu.htm 1 (2024.09.20 閲覧)
- 3) 茨城県生活排水ベストプラン:

https://www.pref.ibaraki.jp/doboku/gesui/ki kaku/bestplan/dai4kaikaitei.html

4) 国土交通省気象庁 過去の気象データ検索:

https://www.data.jma.go.jp/stats/etrn/index . php (2024. 09. 20 閲覧)

1-3 霞ヶ浦湖内水質等モニタリング事業

1 目的

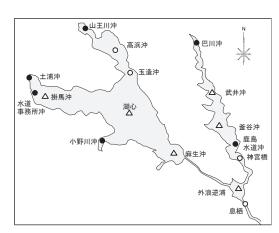
霞ヶ浦において詳細な水質調査を継続的に実施し、水質汚濁状況の空間的・経時的変動を把 握する。また、蓄積した水質データを他の研究事業及び今後の施策立案の基礎資料とする。

2 方法

(1) 調査期間

令和5年4月から令和6年3月

(2) 調査頻度


月1回

(3) 調査地点(図1および表1)

水質調査:16地点

うち6地点は、公共用水域水質調査を兼ねた。

動植物プランクトン調査:6地点

調査地点概略図。 図 1

〇: 水質調査のみ

●: 兼 公共用水域水質調査

Δ: 兼 動植物プランクトン調査

(4) 試料の採取方法

水質測定用試料は、上層(水面下 0.5 m)及び下層(湖底直上 0.5 m)の湖水 1L をペリス タルティックポンプで採取した。植物プランクトン測定用試料は、上層の湖水 100 mL にグ ルタルアルデヒド(終濃度1%)を加えて固定した。動物プランクトン測定用試料は、上層 の湖水 10L を 40 μm プランクトンネットで濃縮した後、シュガーホルマリン (ホルマリン 終濃度およそ5%)を加えて固定した。

表1 調杏地占タおよび緯度経度(世界測地系)―譬	-

水域	地点名	緯度	経度	水域	地点名	緯度	経度
	土浦沖	36°04'45"	140°12'34"		巴川沖	36°08'08"	140°31'15"
	水道事務所沖	36°03'22"	140°13'32"		武井沖	36°03'27"	140°33'21"
	掛馬沖	36°03'14"	140°14'48"	北浦	釜谷沖	36°00'33"	140°34'10"
	山王川沖	36°09'24"	140°19'10"	1	鹿島水道沖	35°58'55"	140°35'55"
西浦	高浜沖	36°07'18"	140°22'39"		神宮橋	35°57'34"	140°36'30"
""	玉造沖	36°05'24"	140°23'55"	常陸	外浪逆浦	35°55'04"	140°36'04"
	湖心	36°02'17"	140°24'15"	利根川	息栖	35°53'02"	140°37'08"
	麻生沖	35°57'54"	140°29'19"				
	小野川沖	35°59'21"	140°21'19"				

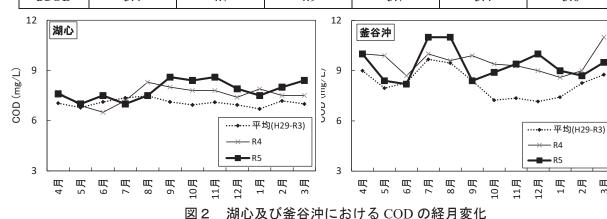
(5) 測定項目

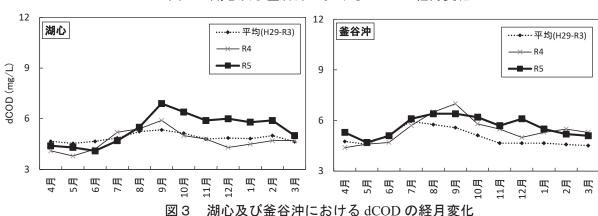
測定は、現地での測定(現地測定及び鉛直測定)と実験室での室内測定(室内分析及び委 託分析)を行った。項目ならびに水質測定項目及びその測定方法を表2に示す。現地測定項 目について、気温以外の項目は上層及び下層を測定した。鉛直測定項目は、表層より 50 cm ごとに湖底まで測定した。植物プランクトンならびに動物プランクトンの同定・計数は外部 委託としたが、植物プランクトン細胞数から細胞体積への換算は、既往知見によって整理さ れた一細胞あたりの体積リスト(長濱ら、20191)を用いた。

表 2 水質分析の方法

	測定	項目		測定方法
現地測定	気温		JIS K 0102	7 温度(ガラス製棒状温度計)
	水温		JIS K 0102	7 温度(ガラス製棒状温度計 ペッテンコーヘル)
	透明度		湖沼調査法	14.2 光学的調査 A透明度
	EC		JIS K 0102	13 電気伝導率
	pН		JIS K 0102	12.1 ガラス電極法
	ORP			ORP電極による測定
鉛直測定	溶存酸素量	DO	JIS K 0102	32.3 隔膜電極法
	水温		JIS K 0102	7 温度(サーミスタ温度計)
室内分析	懸濁物質量	SS	JIS K 0102	14.1 懸濁物質
	強熱残留物	VSS		懸濁物質測定後のろ紙を450℃で強熱し、重量を測定
	溶存酸素量	DO	JIS K 0102	32.1 よう素滴定法
	有機炭素	COD, dCOD	JIS K 0102	17 100℃における過マンガン酸カリウムによる酸素消費量(CODMn)
	りん酸イオン	TOC, DOC	JIS K 0102	22.2 燃焼酸化—赤外線式TOC自動計測法
	全窒素	TN, DIN	JIS K 0170-3	流れ分析法による水質試験方法一第3部:全窒素
	全りん	TP, DTP	JIS K 0170-4	流れ分析法による水質試験方法一第4部:りん酸イオン及び全りん
	各態窒素	NO ₃ -N, NO ₂ -N, NH ₄ -N	JIS K 0170-1,2	流れ分析法による水質試験方法一第3部:全窒素
	りん酸イオン	P04-P	JIS K 0170-4	流れ分析法による水質試験方法一第4部:りん酸イオン及び全りん
	イオン状シリカ	比色Si	吸光光度法ノウハウ	モリブデンブルー法
	クロロフィル	Chl.a, Chl.b, Chl.c	湖沼調査法	16.1 B クロロフィル(ユネスコ法(抽出液にエタノール使用、冷凍処理)
	イオン	Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , SO ⁴²⁻	JIS K 0102	イオンクロマトグラフ法 (35.3, 41.3, 48.3, 49.3, 50.4, 51.4)
委託分析	植物プランクトン	細胞数(Cell Density)		グルタルアルデヒド(終濃度1%)で固定
	動物プランクトン	個体数(Individuals)		シュガーホルマリン(ホルマリン終濃度およそ5%)で固定

3 結果の概要

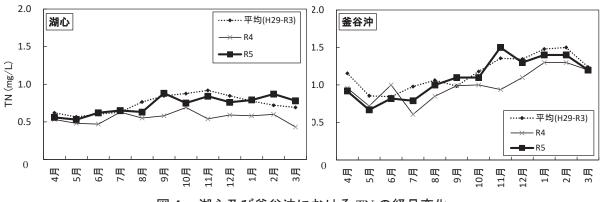

以下に、COD、窒素、りんについて、湖心及び釜谷沖の上層の測定結果を、前年度(令和4 年度)及び過去5年平均(平成29~令和3年度)と比較して示した。植物プランクトン及び動 物プランクトンについては、平成29年度以降の推移を示した。なお、今年度の水質の測定結果 は、原則として公共用水域水質測定結果の報告方法に準拠して丸め、表6~17として示した。


(1) COD

- ・COD の年間平均値は、湖心が 7.8 mg/L、釜谷沖が 9.4 mg/L で、過去 5 年平均と比べて、 湖心、釜谷沖ともに高かった(表3)。COD の経月変化は、湖心は9月以降に過去5年平 均より高く推移し、釜谷沖では6月と9月を除き、過去5年平均より高く推移した(図2)。
- ・dCOD の年間平均値は、湖心が 5.4 mg/L、釜谷沖が 5.7 mg/L で、湖心、釜谷沖ともに過去 5年平均及び令和4年度より高かった(表3)。dCODの経月変化は、湖心では9月以降、 釜谷沖では8月以降に過去5年平均より高く推移した(図3)。

湖 心 釜 谷 沖 項目 5年平均 5年平均 R5 R5 R4 R4 (H29-R3)(H29-R3)COD 7.8 7.5 7.1 9.4 9.5 8.2 5.7 dCOD 5.4 4.7 4.9 5.4 5.0

湖心及び釜谷沖における COD と dCOD の年間平均値及び5年平均値 (mg/L)



(2) 窒素

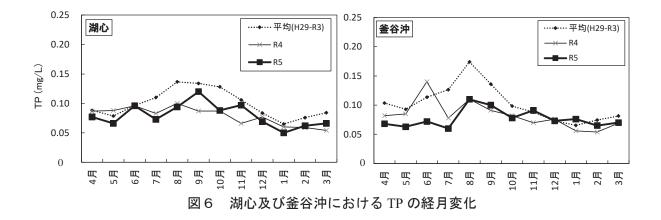
- ・TN の年間平均値は、湖心が 0.72 mg/L、釜谷沖が 1.10 mg/L で、過去 5 年平均と比べて同 程度であった(表4)。経月変化を見ると、釜谷沖では7月まで過去5年平均よりやや低 く推移したものの、湖心、釜谷沖ともに過去5年平均と同程度であった。また、TNが低 かった令和4年度と比較すると、特に年度後半に高く推移した。(図4)。
- ・溶存態無機窒素(DIN:硝酸態・亜硝酸態・アンモニア態窒素の合計濃度)の年間平均 値は、湖心が 0.09 mg/L、釜谷沖が 0.34 mg/L で、湖心では令和 4 年度より高く、過去 5年平均より低かった。釜谷沖では令和4年度より高く、過去5年平均よりやや低かった (表4)。経月変化を見ると、湖心、釜谷沖ともに8月までは低く推移し、9月以降は 0.1 mg/L 以上であった(湖心の 10 月を除く)(図5)。

10		並口/11001/	9 111 C DII1		XU.0 + 1 29 11	
		湖 心			釜 谷 沖	
項目	D.5	D.4	5年平均	D.5	D.4	5年平均
	R5	R4	(H29-R3)	R5	R4	(H29-R3)
TN	0.72	0.56	0.74	1.10	1.00	1.17
DIN	0.09	0.02	0.18	0.34	0.25	0.40

湖心及び釜谷沖における TN と DIN の年間平均値及び5年平均値 (mg/L)

2.0 2.0 ----- 平均(H29-R3) ----平均(H29-R3) 湖心 釜谷沖 - R4 R4 1.5 1.5 **-** R5 R5 (J/gm) 1.0 1.0 0.5 0.5 0

湖心及び釜谷沖における TN の経月変化


図5 湖心及び釜谷沖における DIN の経月変化

(3) りん

- ・TP の年間平均値は、湖心が 0.080 mg/L、釜谷沖が 0.077 mg/L で、過去 5 年平均と比べて 湖心、釜谷沖ともに低かった (表5)。経月変化を見ると、湖心、釜谷沖ともに、10 月 までは過去 5 年平均より低く推移し、11 月以降は過去 5 年平均と同程度であった(図6)。
- ・PO₄-P の年間平均値は、湖心が 0.013 mg/L、釜谷沖が 0.007 mg/L で、湖心、釜谷沖ともに過去 5 年平均と比べて低かった (表 5)。経月変化を見ると、湖心、釜谷沖ともに、8 ~ 9 月に濃度上昇がみられた (図 7)。

表5 湖心及び釜谷沖における TP と PO₄-P の年間平均値及び5年平均値 (mg/L)

		湖心			釜谷沖	
項目	D.5	D.4	5年平均	D.5	D.4	5年平均
	R5	R4	(H29-R3)	R5	R4	(H29-R3)
TP	0.080	0.079	0.099	0.077	0.083	0.102
PO ₄ -P	0.013	0.012	0.021	0.007	0.009	0.020

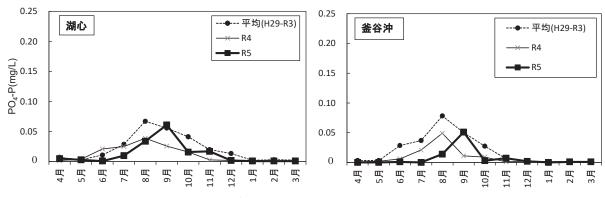


図7 湖心及び釜谷沖における PO4-P の経月変化

(4) 植物プランクトン(図8)

・湖心では珪藻類の出現が多く、9月にその他(褐色鞭毛藻類)が優占したほかは、珪藻類が優占した。釜谷沖では7・8月に藍藻類、9・10月には緑藻類、それ以外の月には 珪藻類が優占した。

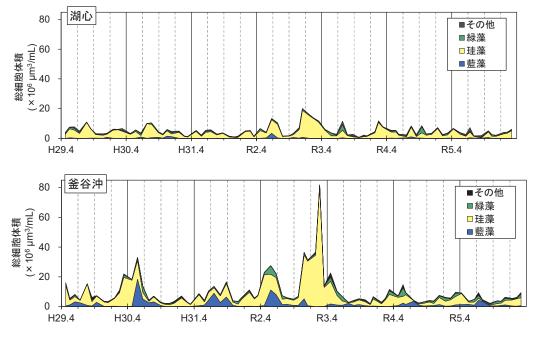


図8 湖心及び釜谷沖における植物プランクトンの推移

(5) 動物プランクトン(図9)

・ 湖心では、7月にカイアシ類、10月と2月にワムシ類が優占したほかは、その他(繊毛虫門等)が優占した。釜谷沖では、5、8,9月にワムシ類が優占したほかは、その他(繊毛虫門等)が優占した。

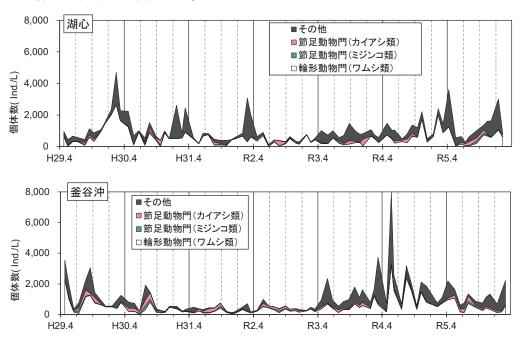


図9 湖心及び釜谷沖における動物プランクトンの推移

(6) 気象(図10)

気象庁の過去の気象データ²⁾を用い、気象を整理した。気温は、6~9月に過去 10年間で最も気温が高くなり、過去平均値より高く推移した。日照時間も、過去平均値より長い月が多く、7・8・10月は過去 10年間で日照時間が最も長かった。降水量は、西浦では 6月、北浦では 6月と9月に過去 10年間で最も多い降水量がみられたものの、その他の月においては、概ね過去平均値と同等もしくはやや少ない傾向で推移した。特に7月には過去 10年間で最も少なく、滞留時間が長くなり、植物プランクトンの増殖を促進された可能性が考えられた。

また、令和元年度および平成 29 年度には、10 月にそれぞれ 400 mm を超える降雨があり、大雨による湖水の希釈や押し出しにより植物プランクトンの増殖が抑制され、COD が低下したと考えられる現象が見られた。令和 5 年度の 10 月の降水量は、西浦:108 mm、北浦:164 mm と少なかった。このことから、令和 5 年度の 10 月の降雨は、植物プランクトンの増殖を抑制しなかったと考えられた。一方で、北浦の 9 月には 376 mm の降雨があり、北浦の 9 月の植物プランクトンの増殖を抑制した可能性が考えられた。

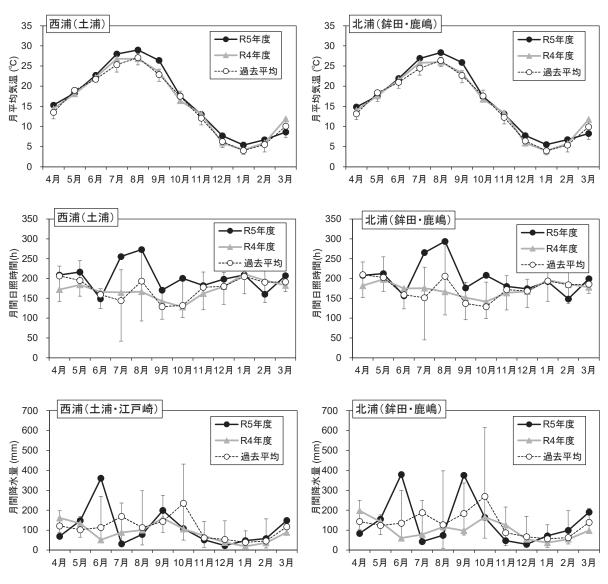


図 10 気象の比較(気象庁データ)

参考文献

- 1) 長濱祐美、大内孝雄、湯澤美由紀、福島武彦、2019. 霞ヶ浦における植物プランクトン体積算 出のための各細胞体積の検討. 土木学会論文集 G(環境) **75**(7)、 Ⅲ_273-Ⅲ_280.
- 2) 国土交通省気象庁 過去の気象データ検索: https://www.data.jma.go.jp/stats/etrn/index.php (2024.09.20 閲覧)

表6 霞ヶ浦の現地測定及び水質分析結果(4月)

令和5年4月10日		}	}	-	-	-	-	-	-	-	-	-									-	-	-		-	-	
本市分	村	水温 透	明度 水深	W Hd		EC	DO SS	8	doob do	D TOC	c Doc	N L	DTN	NO ₃ -N	NO ₂ -N	NH ₄ -N	П	DTP	PO₄−P	Chl.a	, Pa	± -	Mg ²⁺	Ca ²⁺	CI_S	SO ₄ ²⁻	:S
T WE	14.37 H	(°C)	(m) (m)	- (١	(m)	(mS/m) (m	(mg/L) (mg/	/L) (mg/L)	/L) (mg/L)	(L) (mg/L)	(L) (mg/L)	_) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L) (r	(mg/L) (r	(mg/L) (r	(mg/L) ((mg/L) (n	(mg/L) (n	(mg/L) (r	(mg/L)
# #	上層	1.91		8.8		30.8	10 13	89	4.7	5.3	3.1	09'0	0:30	<0.01	<0.01	0.02	0.075	0.011	<0.001	36	26	₽	2	18	35	26	<0.1
共服 軍	屋上	15.5	3.8	8.5		30.6	9.6	89	7 4.5	5.3	3.1	69.0	0:30	<0.01	<0.01	0.02	0.091	0.012	0.001	40	26	1>	2	18	34	26 <	<0.1
i i	上層	15.5		8.8		30.6	11 23	6	5 4.5	5.9	3.1	0.79	0.31	<0.01	<0.01	0.02	0.11	0.017	0.002	59	25	₽	2	17	32	26	<0.1
大送喧	屋上	15.2	0.5	8.6		31.1	10 30	80	9 4.5	5.5	3.0	0.84	0.31	<0.01	<0.01	0.02	0.12	0.015	0.002	59	25	₽	2	17	32	26	<0.1
# #	上層	15.5		8.5		31.2	9.9	89	0 4.7	2.0	3.1	0.59	0:30	<0.01	<0.01	0.02	0.084	0.015	0.003	46	26	□	9	17	35	25	<0.1
大四月	下層	15.9	0.0	8.1	32	32.8	8.1 34	89	8 4.6	4.4	3.1	0.74	0:30	<0.01	<0.01	0.02	0.12	0.022	0.011	44	27	\ \	9	17	36	25	0.2
S.	上層	14.5		8.1	. 30.	_	9.5	7.	6 4.4	4.7	3.1	0.56	0.31	<0.01	<0.01	<0.02	0.077	0.017	0.005	29	27	1>	9	18	37	25	<0.1
Julia.	上層	15	0.0	8.3	33.	2	9.2 29	8	2 4.5	4.8	3.1	0.71	0.29	<0.01	<0.01	<0.02	0.11	0.019	900'0	30	25	<1	2	16	33	23	<0.1
大七	上層	13.9		8.3	3 44.	7	10 18	8	5 4.8	5.3	3.2	09'0	0:30	<0.01	<0.01	0.02	980.0	0.015	0.001	25	31	<1	9	17	43	23	0.1
天 州 佐	圏上	14.4	0.7	8.5		37.8	9.9 18	.8	3 4.9	5.3	3.2	0.63	0.29	<0.01	<0.01	0.02	0.082	0.014	0.001	28	34	<1	7	18	47	25	0.1
5	上層	17.3		8.7		148.6	10 24	8	9 5.0	4.7	3.2	1.4	0.94	0.72	0.01	<0.02	0.098	0.015	0.001	79	28	2	5	19	35	30	0.7
t H	上層	16.7	3.1	8.3	3 155.4	-	8.7 29	8	9 5.1	4.7	3.2	1.6	1.0	0.76	0.01	0.03	0.13	0.014	0.001	85	59	2	5	19	36	30	1.1
光	上層	16.7	200	8.7		31.9	10 20	80	2 4.8	5.1	3.1	0.64	0.30	<0.01	<0.01	<0.02	0.083	0.011	<0.001	39	26	-	2	18	34	26	<0.1
事務所沖	下層	15.7		8.4	32.5	2	9.0 41	6	4 4.8	4.7	3.0	0.91	0.41	0.11	<0.01	0.02	0.12	0.014	0.001	67	23	<1	5	17	30	24	1.1
Ħ H	上層	15.1		8.5		25.2	10 44	4 10	4.5	4.4	2.7	1.5	0.92	0.63	0.01	0.02	0.18	0.019	0.003	110	18	<1	4	16	18	30	4.0
t H H	下層	14.6		8.4	4 26.3		9.3 3.7	8	7 4.5	4.6	2.7	1.5	0.91	0.65	0.01	0.02	0.18	0.019	0.003	87	18	<1	4	16	18	31	4.2
共三国	上層	16.5	20	8.7		33.3	10 26	8	7 5.2	5.7	3.2	0.75	0.32	<0.01	<0.01	<0.02	0.11	0.013	0.001	20	28	<1	9	18	39	26	0.7
1,11,7±°L	下層	15.4		8.4	34.6	· ·	8.9 55	5 10	0 2.0	5.8	3.2	0.92	0.30	<0.01	<0.01	<0.02	0.16	0.015	0.003	22	59	\ \	9	18	40	56	0.5
5日	上層	17.0		9.4		31.9	14.0 33	3 10	3.6	3.8	2.2	3.2	2.3	2.20	0.02	<0.02	0.14	0.016	0.002	180	22		8	19	28	28	8.7
ţ.	下層	15.9		9.3	32.4	-	11 37	7 10	3.5	3.6	2.2	3.2	2.3	2.20	0.02	<0.02	0.14	0.015	0.001	150	22	<1	8	19	27	27	8.6
5 非	上層	17.1	90	9.4	-	34.3	11 21	1 10	4.8	5.0	3.2	1.1	0.52	0.17	0.01	<0.02	0.085	0.014	<0.001	120	28		8	18	37	23	<0.1
T/ T/ T	下層	15.6		9.1		35.2 8	8.2 2.6	9 10	4.9	4.6	3.2	1.3	0.58	0.20	0.01	0.06	960.0	0.013	<0.001	130	28	<1	8	19	38	23	0.2
!!	围出	16.5	80	9.5		35.6	11 20	0 10	5.3	5.5	3.3	0.92	0.42	0.04	<0.01	0.02	0.068	0.012	<0.001	110	59	₽	80	18	39	22	<0.1
t H	严	16.0		9.4	4 35.7	~	9.9 20	0	4.8	5.0	3.3	1.0	0.45	90.0	<0.01	0.03	0.074	0.014	<0.001	110	29	∵	80	18	39	22	<0.1
爾島	上層	15.6	7 C	9.3		35.6	11 20	0 10	0 4.9	5.6	3.3	06:0	0.38	0.01	<0.01	<0.02	0.077	0.015	<0.001	110	59	\ \	8	18	39	22	<0.1
大厘大	下層	15.5		9.4	1 35.	8	10 20	0 10	5.1	5.3	3.4	0.94	0.39	0.02	<0.01	0.02	0.071	0.013	<0.001	110	29		8	18	39	22	<0.1
中中	圏	15.8	- H	9.2	2 43.	_	10 27	7 10	5.2	0.9	3.5	0.82	0.37	<0.01	<0.01	0.02	0.095	0.015	<0.001	61	41	▽	6	19	56	24	<0.1
40.4	下層	15.7	_	9.0) 42.	7	10 29	11	5.4	0.9	3.5	0.83	0.35	<0.01	<0.01	<0.02	0.100	0.016	<0.001	72	40	∵	6	19	22	24	<0.1
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	上層	15.5	90	8.5	5 42.	7	10 20	89	5 4.8	5.3	3.3	0.50	0.33	<0.01	<0.01	<0.02	0.077	0.015	0.001	37	39	-	7	18	22	> 92	<0.1
# 7 XX XZ /#	屋上	15.5		8.5		41.8	9.8	89	5 4.8	5.3	3.3	0.62	0.32	<0.01	<0.01	0.02	0.084	0.016	0.001	36	39	-	8	18	26	26	<0.1
垣	上層	17.3	97	8.6		40.6	10 13	3.8	1 4.9	5.3	3.4	0.38	0.33	<0.01	<0.01	0.02	0.059	0.015	<0.001	59	38	-	7	18	54	> 92	<0.1
E L	屋上	15.7	_	8.5		41.4	9.8 15	5 8.2	2 4.9	5.1	3.3	0.53	0.34	<0.01	<0.01	0.02	0.078	0.015	0.001	36	39	-	7	19	54	26 <	<0.1

表7 霞ヶ浦の現地測定及び水質分析結果(5月)

令和5年5月19	П					ŀ	·																				
李小	五十四	水温	透明度	水深	Hd	EC	DO	SS	COD	. ДООР	TOC	DOC T	TN	DTN NO	NO ₃ -N NO	NO ₂ -N NH ₄ -N	TP N-t	P DTP	P PO ₄ -P	-P Chl.a	.a Na	±×	Mg ²⁺	Ca ²⁺	G	SO ₄ ²⁻	Si
中	1本八八百	(°C)	(m)	(m)	-	(mS/m)	(mg/L) (r	(mg/L) (i	(mg/L)	(mg/L) (r	(mg/L) (m	(mg/L) (mg	(mg/L) (m	(mg/L) (mg	(mg/L) (mg	(mg/L) (mg	(mg/L) (mg/L)	/L) (mg/L)	/L) (mg/L)	(L) (µg/L)	(L) (mg/L)	_) (mg/L)	(mg/L)	.) (mg/L)	(mg/L)	(mg/L)	(mg/L)
# #	四川	21.3	L	0	7.9	32.9	8.0	59	8.3	4.6	5.3	3.1 0.6	0.63 0	0.31 <0.01	0.0> 10	.01 <0.02	260.0 20	92 0.013	13 0.002	12 25	28	4	80	20	36	26	9.0
大服車	四上	21.3	0.0	بر س	8.3	32.8	8.1	32	8.2	4.4	5.5	3.1 0.6	0.62 0	0.29 <0.01	01 <0.01	.01 <0.02	760.0 20	97 0.012	12 0.001	11 28	28	4	∞	20	35	26	0.5
Į. In	墨丁	21.8	9		9.8	30.9	9.7	17	9.7	4.5	5.2	3.2 0.61		0.30 <0.01	01 <0.01	.01 <0.02	0.073	73 0.015	15 0.001	11 29	26	4	8	19	32	26	8.0
天 (E	壓上	20.8	0.0	5.4	8.4	31.2	7.7	32	9.6	4.6	5.3	3.1 0.7	0.74 0	0.29 <0.01	0.0> 10	.01 0.02	0.11	1 0.014	14 0.002	72 21	26	3	8	19	32	26	1.0
# #	四田	22.1	c	ū	8.3	33.1	9.3	13	6.7	4.6	4.6	3.1 0.5	0.54 0	0.29 <0.01	01 <0.01	.01 <0.02	0.060	30 0.013	13 0.001	10	29	4	80	20	38	26	0.4
大 凹 H	屋上	19.9	ö. Ö	6.0	7.7	32.2	4.5	52	9.6	4.7	5.6	3.1 0.9	0.93 0	0.30 <0.01	0.0> 10	.01 <0.02	0.18	8 0.021	21 0.007	39	27	4	80	20	33	26	1.3
7	屋工	20.1	c	0	7.8	33.7	8.3	16	7.0	4.3	4.3	3.1 0.5	0.53 0	0.29 <0.01	0.01	.01 <0.02	0.066	36 0.013	13 0.003	18	30	4	8	20	39	26	0.4
79.FC	下層	19.6	0.0	0.0	7.9	34.0	7.4	31	7.7	4.4	4.4	3.0 0.6	0.64 0	0.29 <0.01	0.01	.01 <0.02	0.10	0.016	0.005	15 24	30	4	8	20	38	26	9.0
五七	四十	20.8	9	4	8.3	38.1	0.6	23	8.4	4.9	5.4	3.3 0.6	0.62 0	0.31 <0.01	0.07	.01 <0.02	0.087	37 0.013	13 0.002	24	37	4	6	20	52	26	1.7
大州长	下層	20.7	0.0	C. I	9.8	38.2	0.6	24	8.0	4.9	5.4	3.3 0.6	0.67	0.31 <0.01		<0.01 <0.02	0.089	39 0.012	12 0.002	72 21	37	4	6	19	51	25	1.7
5 # +	屋工	23.7	4		8.5	32.1	10	19	8.9	5.4	4.5	3.4 1.	1.5 0	0.96 0.55	-	0.02 0.04	0.10	0 0.025	25 0.006	94	. 27	2	7	21	33	29	3.8
± = 1	屋上	23.3		0.0	8.3	32.5	8.1	22	8.0	5.3	4.2	3.3 1.	1.3 0	0.96 0.57		0.02 0.06	0.10	0 0.016	0.002	12 48	27	2	7	21	33	29	3.9
光	墨丁	22.6		4	8.5	31.4	8.8	35	8.7	4.8	5.5	3.1 0.6	0.67	0.29 <0.01	01 <0.01	.01 <0.02	01.0	0.014	14 0.002	33	28	4	8	20	35	27	6.0
事務所沖	屋上	22.3	0.4	4.7	9.8	32.5	8.8	37	8.4	5.0	5.5	3.1 0.6	0.65 0	0.29 <0.01	01 <0.01	.01 <0.02	0.11	1 0.013	13 0.001	11 28	27	4	8	20	35	26	8.0
Ħ H	四十	23.8	2	9	8.3	25.8	8.4	36	10	5.7	4.7	3.5 1.	1.5 0	0.61 0.17	\dashv	0.01 0.04	0.17	7 0.034	34 0.010	0 100	0 20	3	9	18	21	29	5.8
+ H H	屋上	24	4.0	6.	8.4	25.8	8.2	34	9.8	5.8	4.5	3.5 1.	1.5 0	0.20		0.02 0.05	0.17	7 0.035	35 0.011	1 88	20	3	9	18	21	29	5.5
中川温川	屋山	20.4	2	- 1	7.8	33.6	8.2	29	7.6	5.1	4.8	3.3 0.5	0.57 0	0.30 <0.01	0.01	.01 <0.02	0.10	0 0.014	14 0.002	12 28	29	4	80	20	38	25	6.0
T/II/I#, [,	壓	19.5		1.	7.9	33.6	6.9	45	8.7	5.4	4.6	3.6 0.6	0.64 0	0.29 <0.01	0.07	.01 <0.02	0.15	5 0.014	14 0.004	33	30	4	∞	20	39	26	1.0
5日	四十	23.5	2	-	9.2	28.1	10	38	11	5.3	4.4	3.2 2.	2.5	1.6 1.3		0.02 0.02	0.17	7 0.025	25 0.007	140	0 20	3	80	19	25	27	7.3
÷	屋上	23.6	†. O	1.7	9.2	28.3	10	43	11	4.6	4.0	3.2 2.	5.6	1.8 1.4	-	0.02 0.02	0.17	7 0.025	25 0.007	140	20	3	80	18	24	26	7.7
# #	四十	22.2	-	0	9.2	34.9	10	6	8.3	4.6	4.8	3.3 0.6	0.65 0	0.33 <0.01	0.01	.01 <0.02	0.063	33 0.014	14 0.001	32	30	3	10	20	39	22	<0.1
+ + + + + + + + + + + + + + + + + + +	壓	20.4	<u>-</u>	9	8.1	35.6	2.5	23	9.5	4.9	4.4	3.3	1.1	0.43 <0.01	01 <0.01	.01 0.09	0.11	1 0.013	13 0.005	98 90	59	က	10	20	37	23	9.0
#. *\	四十	20.9	-	c	8.9	35.5	9.5	13	8.4	4.7	4.2	3.3 0.67		0.34 <0.01	01 <0.01	.01 <0.02	0.063	33 0.011	11 <0.001	37	30	3	10	20	39	22	<0.1
t t	壓	19.7	<u> </u>	0.0	8.5	36.2	5.4	21	9.3	4.8	4.2	3.2 0.87		0.32 <0.01	0.07	.01 <0.02	00:000	90 0.011	11 <0.001	01 64	30	က	10	20	39	22	0.1
開	四十	20.8	c	9	8.7	37.1	8.9	18	9.0	4.6	4.9	3.3 0.6	0.68 0	0.33 <0.01	01 <0.01	.01 <0.02	0.072	72 0.011	11 <0.001	11 42	33	4	10	21	43	22	<0.1
大道 上	屋上	20.4	6.0	9	8.8	37.7	8.3	20	9.3	4.7	4.4	3.3 0.7	0.73 0	0.31 <0.01	01 <0.01	.01 <0.02	0.088	38 0.011	11 <0.001	01 46	33	4	10	21	43	22	<0.1
早中年	屋工	21.9	0	9	8.9	43.0	9.8	23	9.4	4.7	9.6	3.4 0.7	0.74 0	0.33 <0.01	01 <0.01	.01 <0.02	0.089	39 0.013	13 0.001	11 38	43	4	10	21	29	25	0.1
₽	壓	21.7	0.		8.9	42.9	9.5	56	9.5	4.9	5.4	3.4 0.7	0.79 0	0.31 <0.01		<0.01 <0.02	0.10	0 0.012	12 0.001	11 40	43	4	10	21	28	25	0.2
# # # # # # # # # # # # # # # # # # #	四十	21.9	c	,	8.8	43.4	9.8	18	8.0	4.7	5.3	3.4 0.51		0.30 <0.01	0.01	.01 0.03	0.081	31 0.012	12 <0.001	11 28	41	4	6	19	22	26	0.4
E PLAY I	严	22.0	6.0	2	8.9	40.6	9.4	16	8.3	4.7	5.2	3.4 0.57		0.30 <0.01	01 <0.01	.01 0.02	770.0 20	77 0.012	12 0.001	11 28	40	4	6	19	22	25	0.4
塩	上層	21.7	0	4.7	8.3	39.6	0.6	14	8.0	4.7	2.0	3.3 0.4	0.48 0	0.30 <0.01	0.01	.01 <0.02	0.065	35 0.011	11 <0.001	77 10	39	4	6	20	22	26	0.3
<u> </u>	壓	21.4	ŝ	È	9.8	39.8	9.2	17	8.0	4.8	4.9	3.3 0.4	0.47 0	0.30 <0.01	01 <0.01	.01 <0.02	0.074	74 0.012	12 0.001	11 29	39	4	6	20	54	26	0.3

霞ヶ浦の現地測定及び水質分析結果(6月) 来8

令和5年6月19	Ш																									
李 九	1年	水温透	明度 水深	H _d	EC	DO	SS	COD	dcop	тос	DOC	N	DTN NC	NO ₃ -N NC	NO ₂ -N	NH4−N T	TP D	ртр ро	PO4−P CF	Chl.a Na ⁺		Mg ²⁺	Ca ²⁺	_ [D	SO ₄ ²⁻	Si
中	1本小百	(°C)	(m) (m)	-	(mS/m)	/gm)	(L) (mg/L)) (mg/L)	(mg/L)	(mg/L) ((mg/L) (r	(mg/L) (r	(mg/L) (m	(mg/L) (m	(mg/L) (m _i	(mg/L) (mg	(mg/L) (mg	(mg/L) (mg	(mg/L) (μg	(hg/L) (mg/L)	(L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
# #	墨丁	24.6	-	7.6	23.4	6.4	29	7.8	4.4	4.4	2.7 0	0.89	0.47 0	0.10	0.01 0.	0.06	0.10 0.0	0.017 0.0	0.002	53 18	4	9	17	23	20	3.3
共 聖年	上層	24.3	0.0	7.8	24.0	6.5	33	7.9	4.0	4.4	2.8 0	0.88	0.46 0	0.10	<0.01 0.	0.07	0.11 0.0	0.015 0.0	0.002 5	56 18	3	9	16	22	19	3.2
in the	墨丁	25.4	90	9.0	20.9	9.2	28	9.4	4.5	5.3	3.0 0.	0.99	0.51 0	0.13 0	0.01 0.	0.03	0.11 0.0	0.018 0.0	0.002	98 15	3	2	14	18	17	3.0
t E	屋上	25.4	7.0	9.2	21.3	9.3	30	9.3	4.6	5.2	3.0	1.1	0.48 0	0.13 0	0.01 0.	0.03	0.12 0.0	0.017 0.0	0.002	91 15	3	2	14	17	17	3.0
# #	屋工	25.2	0	8.4	24.4	9.3	16	8.0	4.4	4.7	2.9 0	0.78	0.33 0	0.02 <0	<0.01 0.	0.02 0.0	0.079 0.0	0.015 0.0	0.001 5	57 19	3	9	15	23	18	2.2
大型	下層	24	0.0	7.7	22.0	5.0	39	9.0	4.6	2.0	3.0	1.1	0.71 0	0.23 0	0.02 0.	0.16 0.	0.16 0.0	0.015 0.0	0.002	59 16	3	9	15	19	17	3.3
· 等	墨丁	24.3	9	7.2	25.8	7.2	24	7.5	4.1	4.2	2.9 0	0.62	0.28 <0	<0.01 <0	<0.01 <0	<0.02 0.0	0.096 0.0	0.015 0.0	0.001	38 23	3	9	16	29	20	1.8
, E	屋	24.2	0.0	7.6	27.4	7.2	24	7.7	4.1	4.1	2.8 0	0.59	0.27 <0	<0.01	<0.01 <0	<0.02 0.0	0.097 0.0	0.015 0.0	0.001	34 22	က	9	16	28	20	1.8
5世	圏	25.3	-	8.3	31.4	9.0	19	8.0	4.6	5.0	3.1 0	0.53	0:30 <0	<0.01	<0.01 <0	<0.02 0.0	0.082 0.0	0.015 <0.0	(0.001	19 28	4	7	18	36	21	2.6
大 州 佐	下層	25.2		8.4	31.5	8.8	19	8.0	4.9	4.6	3.2 0	0.63	0.31 <0	<0.01 <0	<0.01 <0	<0.02 0.0	0.077 0.0	0.015 <0.001		19 28	4	7	17	36	21	2.6
5 サ 十	墨丁	26.3	90	8.7	25.0	10	18	8.2	4.4	4.3	2.8	1.5	1.20 0	0.90	0.03 0.	0.02 0.	0.10 0.0	0.017 0.0	0.002 6	17	4	2	19	21	22	6.4
± 	上層	26.1		8.8	25.5	10	13	7.4	4.6	4.0	2.8	1.5	1.20 0	0.92 0	0.03 0.	0.03 0.0	0.089 0.0	0.015 0.0	0.002	54 17	4	2	19	20	22	6.4
水	墨丁	25.0	30	8.1	23.4	8.4	37	8.6	4.4	4.3	2.7	1.3	0 86:0	0 89.0	0.02 0.	0.02 0.	0.11 0.0	0.015 0.0	0.002	42 15	4	2	18	18	20	6.1
事務所沖	下層	24.9	7	8.3	23.2	8.4	39	8.6	4.4	4.1	2.7	1.2	0.97	0 89.0	0.02 <0	<0.02 0.	0.12 0.0	0.014 0.0	0.002	57 15	3	2	18	18	20	6.3
Ħ H	屋工	26.2	-	9.0	17.4	10	31	10	4.7	4.2	2.9	1.2	0.84 0	0.52 0	0.02 0.	0.03	0.15 0.0	0.017 0.0	0.004	96 10	2	2	15	10	18	7.0
H H H	下層	26.2		9.1	18.3	6.6	29	9.1	4.7	4.0	2.8	1.3	0.86 0	0.54 0	0.02 0.	0.02 0.	0.14 0.0	0.017 0.0	0.004 8	87 9	2	4	14	6	16	7.2
中川温小	墨丁	24.4	70	8.0	27.3	7.6	37	7.9	4.6	4.2	2.9 0	99:0	0.45 0	0.17 0	0.01 <0	<0.02 0.0	0.12 0.0	0.013 0.0	0.001	39 21	3	9	17	26	20	4.1
±/11/4±/1/	屋上	24.4		8.1	27.2	7.5	24	9.1	4.6	4.7	2.9 0	0.79	0.47 0	0.17 0	0.01 <0	<0.02 0.0	0.15 0.0	0.013 0.0	0.001	35 21	က	7	17	27	21	4.2
## E	壓긕	25.4		8.4	25.3	9.1	30	8.6	4.5	3.9	3.0	3.80	3.20 3	3.00 0	0.04 0.	0.02 0.	0.12 0.0	0.015 0.0	0.003	57 14	4	8	18	17	22	0.6
<u>+</u>	国	25.4	-	8.8	25.8	9.3	34	8.8	4.5	3.9	3.0	3.80	3.30 3	3.00 0	0.04 <0	<0.02 0.	0.12 0.0	0.015 0.0	0.003	59 14	4	7	19	17	22	8.9
押報	壓円	24.7	7.9	8.3	24.4	8.4	14	8.3	5.0	4.3	3.3	1.1	0.70	0.31 0	0.01 0.	0.06 0.0	0.072 0.0	0.014 0.0	0.001 5	58 18	3	7	15	23	16	1.7
	屋上	24.6		8.8	24.7	7.4	23	8.6	5.0	4.3	3.2	1.3	0.82 0	0.34 0	0.02 0.	0.12 0.0	0.099 0.0	0.015 0.0	0.002 6	62 18	8	7	12	22	16	1.9
**************************************	壓円	24.0	00	8.4	30.1	7.8	17	8.2	5.1	4.3	3.2 0	0.82	0.35 <0	<0.01	<0.01 <0	<0.02 0.0	0.072 0.0	0.013 0.001		52 25	က	80	18	31	19	0.2
Ė Ħ	屋上	23.9		8.5	30.4	7.6	20	8.7	4.8	4.3	3.2 0	0.84	0.34 <0	<0.01	<0.01 <0	<0.02 0.081		0.012 0.0	0.001 5	51 25	3	8	18	32	19	0.3
鹿島	壓円	24.0	7.0	8.2	31.2	8.6	22	9.0	4.8	4.4	3.2 0	0.79	0.34 <0	<0.01	<0.01 <0	<0.02 0.0	0.079 0.0	0.013 <0.001		46 26	က	6	18	33	19	0.1
水 原冲	国	23.8	_	8.5	31.1	8.0	23	9.0	4.8	4.4	3.2 0	0.77	0.33 <0	<0.01	<0.01 <0	<0.02 0.081	-	0.013 <0.0	<0.001 4	43 26	8	6	18	33	19	0.1
北	圏	25.1	n 0	8.0	34.2	8.3	30	9.8	4.8	4.4	3.2 0	0.87	0.32 <0	<0.01	<0.01 <0	<0.02 0.	0.10 0.0	0.014 0.0	0.002	48 30	4	6	19	38	20	9.0
₽ 11 ±	區	25.0		8.4	34.0	8.2	31	9.6	2.0	4.4	3.2 0	0.92	0.34 <0	<0.01	<0.01 <0	<0.02 0.0	0.11 0.0	0.014 0.0	0.002 5	52 30	က	6	19	38	19	9.0
押押で	壓円	24.9	7	7.0	35.1	7.5	26	7.6	4.3	4.2	3.2 0	0.73	0.33 <0	<0.01	<0.01 <0	<0.02 0.0	0.11 0.0	0.023 0.0	0.009	30 29	4	7	16	37	19	2.6
7F.XE.ME	屋上	24.9		7.5	35.3	7.3	25	7.7	4.4	4.1	3.1 0	0.68	0.32 <0	<0.01	<0.01 <0	<0.02 0.	0.10 0.0	0.023 0.0	0.009	30 33	4	8	18	44	22	2.6
血	上層	25.1	90	7.5	33.1	7.9	18	7.3	4.4	4.1	3.1 0	99.0	0.33 <0	<0.01	<0.01 <0	<0.02 0.0	0.090 0.0	0.021 0.0	0.008	34 32	4	∞	18	42	22	2.1
E L	屋上	25.1		7.7	33.2	7.7	20	7.3	4.5	4.2	3.1 0	0.56 (0.33 <0	<0.01	<0.01 <0	<0.02 0.0	0.094 0.0	0.022 0.0	0.008	35 32	4	∞	18	43	22	2.2

霞ヶ浦の現地測定及び水質分析結果(7月) 表9

令和5年7月12	5日																										
‡ 1,0	古	水温	透明度	光	Hd	EC	DO	SS C	COD do	dCOD T	TOC DC	DOC TN	NTO N	NO ₃ -N	N NO ₂ -N	N NH4-N	AT T	DTP	PO4-P	Chl.a	Na₊	¥	Mg ²⁺	Ca ²⁺	_IO	$SO_4^{2^-}$	Si
L L	III VIVE	(0°)	(m)	(m)	1	(mS/m)	(mg/L) (r	(mg/L) (m	(mg/L) (m	(mg/L) (m	(mg/L) (mg	(mg/L) (mg/L)	(L) (mg/L)	(L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
五里	四四	31.2	ď		31.2	26.2	9.2	18	8.1	5.1	5.0 3.	3.3 0.63	3 0.34	4 <0.01	<0.01	0.03	0.066	0.016	0.001	40	20	4	9	17	25	21	0.9
大型工	下層	29.1	0.0	4.0	29.1	26.7	5.7	48 6	9.0	4.7 4	4.6 3.	.2 0.96	6 0.51	0.11	0.01	0.11	0.13	0.016	0.003	44	19	4	9	18	24	21	2.7
in Yi	下層	29.7	4		29.7	24.3	7.8	23 8	8.8	5.4 4	4.8 3.	3.5 0.94	4 0.45	5 0.05	0.03	0.04	0.12	0.041	0.022	61	18	3	6	16	21	19	3.6
t L	屋上	28.7	6.0	4.4	28.7	25.5	6.8	26 8	8.1	5.3	4.3 3.	.5 0.91	1 0.51	1 0.07	0.03	60.0	0.13	0.046	0.029	42	18	3	9	16	21	18	3.7
; ;	壓出	29.1	1		29.1	26.2	8.1	19	8.0	5.1 4	4.6 3.	3.5 0.84	4 0.41	0.02	0.02	0.05	0.10	0.032	0.014	53	21	4	7	17	25	19	3.4
天 旧 H	严	28.1	7.0	0.0	28.1	26.2	1.4	38	8.7	4.7 4	4.4 3.	3.4 1.1	0.73	3 0.10	0.11	0.21	0.17	0.061	0.050	29	70	4	9	17	24	19	4.3
· 另	国山	28.7	d	,	28.7	27.9	7.9	13 7	7.0	4.7 4	4.3 3.	3.3 0.65	5 0.34	4 <0.01	<0.01	0.05	0.073	0.026	0.010	34	24	4	7	17	31	21	2.2
ים, ושי	圏上	27.7		-:0	27.7	29.2	3.2	29 7	7.4	5.1 4	4.0 3.	3.2 0.76	6 0.47	7 0.02	0.02	0.13	0.12	0:020	0.039	19	24	4	7	17	31	21	3.1
大 在	图	29.3	7.0	9	29.3	36.9	7.6	16 7	7.8	5.1	4.3 3.	3.4 0.60	0.32	2 <0.01	<0.01	0.03	0.084	0.033	0.019	20	59	4	7	16	36	19	3.7
t H &	屋上	28.8	· · ·	0.1	28.8	35.2	7.7	17 7	9.7	5.5	4.3 3.	3.4 0.60	0.32	2 <0.01	<0.01	0.03	0.095	0.034	0.020	19	32	4	8	18	43	22	3.7
# # +	上層	32.5	L	0	32.5	29.3	7.5	22 8	8.9	5.2	4.7 3.	3.5 1.4	0.88	3 0.35	0.02	0.14	0.11	0.023	0.004	64	21	4	9	18	23	20	4.4
t H	屋上	31.8	0.0	3.2	31.8	29.8	6.4	27 8	8.3	5.1 4	4.2 3.	3.4 1.4	1.0	0.43	0.02	0.19	0.12	0.019	0.003	46	24	5	9	20	28	24	4.8
水道	下圈	31.5	4		31.5	26.8	9.3	31 8	8.9	5.2	4.4 3.	3.3 0.79	9 0.35	5 <0.01	<0.01	0.03	0.12	0.019	0.001	92	19	4	6	18	24	21	3.0
事務所沖	下層	31	0.0	4.7	31.0	27.5	7.0	48 6	9.0	5.4 4	4.3 3.	3.2 0.93	3 0.45	5 0.06	0.01	0.07	0.15	0.017	0.003	20	19	4	9	19	24	22	3.3
#E	下層	31.0	u u	-	31.0	22.0	8.9	35	10	5.9	4.5 3.	3.6 1.0	0.47	7 0.04	0.01	90:0	0.19	0.044	0.024	100	15	3	5	16	14	21	6.2
E H H	下層	30.4	0.0	D.	30.4	22.5	7.3	40	10	5.7 4	4.6 3.	3.7 1.0	0.49	9 0.05	0.01	0.07	0.19	0.047	0.028	81	14	3	5	14	13	18	6.1
中江 三型 小	下層	30.5	u C	c	30.5	29.5	8.6	21 8	8.7	5.5	4.9 3.	3.4 0.68	8 0.35	5 <0.01	<0.01	0.02	0.097	0.024	0.009	31	22	3	9	17	26	19	3.0
1,11/T	四	29.5	0.0	0.0	29.5	29.1	6.2	28 7	7.5	5.1 4	4.1 3.	3.3 0.69	9 0.39	9 0.01	<0.01	90:0	0.11	0.033	0.019	32	23	4	7	17	30	21	2.4
月日	四十	31.1	Ĉ	,	31.1	28.1	15	33	14	6.3	4.9 3.	3.7 2.9	1.4	1.10	0.03	0.02	0.15	0.020	0.003	180	19	4	6	20	22	23	11.0
ŧ	四里	31	0.5	7.7	31.0	28.2	14	43	14	6.4	4.8 3.	3.7 2.8	1.5	1.10	0.03	0.02	0.16	0.019	0.003	180	17	3	8	18	18	19	11.0
5 非 非	图	30.0	9	-	30.0	27.2	10	16	13	6.8	4.8 4.	4.0 0.95	5 0.39	9 <0.01	<0.01	0.03	0.082	0.017	<0.001	71	19	3	7	15	22	16	3.5
+ + + +	四里上	28.1	0.0	1.7	28.1	27.8	2.5	21 8	9.3	6.0	4.4 3.	3.8 1.1	0.60	0.01	<0.01	0.24	0.13	0.058	0.046	61	21	3	8	17	27	18	3.9
#. %	图	30.0		c	30.0	28.9	10	15	11	6.1	4.7 3.	3.8 0.79	9 0.36	3 <0.01	<0.01	0.03	090'0	0.014	<0.001	09	24	3	8	17	30	19	1.6
t t	屋上	28.0	· ·	7:0	28.0	29.8	2.9	23 6	6.6	6.0	4.3 3.	3.8 1.0	0.48	3 <0.01	<0.01	0.18	0.099	0.028	0.017	69	24	3	8	18	30	19	2.2
軍	四里	29.6	9	9	29.6	30.9	9.7	18	11	6.7	4.8 4.	4.0 0.82	2 0.36	3 <0.01	<0.01	0.03	0.069	0.013	<0.001	74	56	3	8	18	33	19	1.5
共 州	下層	29.0	0.0	3.0	29.0	30.5	5.9	21	10	6.3	4.4 3.	3.8 0.85	5 0.37	7 <0.01	<0.01	0.03	0.096	0.013	<0.001	78	25	3	8	18	32	19	1.8
加克森	下層	29.9	7	C	29.9	28.4	8.9	32	12	9:9	4.7 3.	3.9 0.91	1 0.37	7 <0.01	<0.01	0.03	0.12	0.023	0.006	100	38	4	10	20	20	21	1.7
# # #	屋上	29.8	4.	7.0	29.8	38.9	7.9	35	12	6.4	4.7 3.	3.9 0.86	6 0.33	3 <0.01	<0.01	0.03	0.13	0.027	0.012	97	32	4	6	18	43	18	1.8
## ## ##	上層	29.8	,	9	29.8	39.3	8.2	14 8	8.2	5.7	4.2 3.	3.7 0.42	2 0.35	5 <0.01	<0.01	0.03	0.086	0.031	0.016	32	36	4	8	18	47	20	2.0
77.戊疋用	四	29.7	0.7	ο:	29.7	39.4	8.1	15 8	8.1	5.8 4	4.2 3.	.6 0.46	6 0.33	3 <0.01	<0.01	0.03	0.075	0.031	0.016	29	36	4	8	17	46	19	2.0
i i	圖出	31	,	9	31.0	43.6	10	13 8	8.8	5.8	4.6 3.	.6 0.35	5 0.35	5 <0.01	<0.01	0.03	0.070	0.028	0.014	25	46	2	10	20	67	25	1.8
Ą	四四四	28.6	0.7	p.	28.6	40.5	4.0	15 7	7.5	5.4	4.1 3.	.5 0.60	0.49	9 0.04	0.01	0.14	0.10	0.057	0.048	38	41	2	9	20	26	24	3.2

表10 霞ヶ浦の現地測定及び水質分析結果(8月)

令和5年8月3日	Е.																									
李 九 夕	1 年	水温	透明度	水深 pH	EC	DO	SS O	COD	dcop	TOC	DOC	N	NTO	NO ₃ -N	NO ₂ -N	NH ₄ -N	ТР	отр Р	PO ₄ -P	Chl.a N	Na⁺	¥	Mg ²⁺ C	Ca ²⁺ C	CI_ SO	SO ₄ ²⁻ Si
日本	1本小厝	(°C)	(m) (r	- (m)	(mS/m)	m) (mg/l	(L) (mg/L)	_) (mg/L)	(mg/L)	(mg/L)	(mg/L) ((mg/L) ((mg/L) (i	(mg/L) (r	(mg/L) (n	(mg/L) (r	(mg/L) (r	(mg/L) (n	1) (T/8m)	(µg/L) (m ₁	(mg/L) (mį	(mg/L) (m _i	(mg/L) (m	(mg/L) (m _i	(mg/L) (mg/L)	(L) (mg/L)
# #	墨丁	30.3		7.6	29.1	5.7	7 18	7.5	6.1	4.0	3.8	0.79	0.64	> 10.0	<0.01	0.18	0.10	0.056 0	0.034	10 2	23	4	7	19 2	29 22	1.1
共配	圖	30	٥.4	3./ 7.9	29.0	5.3	3 24	7.6	5.7	4.0	3.6	0.77	0.57	> 10.0	<0.01	0.19	0.11	0.057 0	0.034	8 2	23 ,	4	1 1	18 2	28 21	1.2
i H	墨丁	30.2	0.5	8.3	28.0	6.4	1 27	9.8	6.3	4.7	4.0	98'0	0.46	<0.01	<0.01	0.05	0.17	0.086	0.065	43 2	, 22	4	7	18 2	26 20	2.0
Ŧ.¥.@	屋上	30.2		8.4	28.1	6.7	7 33	8.2	6.4	4.7	4.0	0.94	> 74.0	<0.01	<0.01	0.07	0.19	0.091 0	690.0	35 2	22	4	7	18 2	26 20	2.1
Ħ H	上層	30.2		8.1	28.7	6.4	1 20	9.7	5.8	4.3	3.7	0.72	0.41	> 10.0	<0.01	0.05	0.11 0	0.055 0	0.034	25 2	25	4	7	18 3	32 21	9.0
T III	上層	30.1	_	.4 8.2	29.0	4.7	7 37	9.4	6.3	4.7	3.9	0.93	0.59	0.02	<0.01	0.16	0.19	0.091 0	0.071	31 2	, 22	4	7	18 2	27 20	2.4
· · · · · · · · · · · · · · · · · · ·	遏工	29.7	00	7.5	30.2	9.9	3 12	7.5	5.5	4.1	3.6	0.63	0.41	<0.01	<0.01	0.05 0	0.094	0.055 0	0.034	23 2	23	4	. 9	17 2	27 18	0.4
ים, ושי	上層	29.7		8.0	30.9	9.9	3 13	7.3	5.5	4.1	3.6	0.63	0.40	<0.01	<0.01	0.05 0	0.095	0.054 0	0.034	24 2	, 25	4	7	18 3	32 21	0.4
5世	屋山	28.5	г г	7.4	57.6	4.7	7 22	9.2	9.9	4.8	4.2	1.0	0.62	0.05	0.01	0.16	0.19	0.10	980.0	31 6	67 (6 1	1.	21 10	100 25	1.9
t H *	上層	28.3	_	7.6	55.6	4.7	7 22	8.8	6.1	4.8	4.2	1.0	95.0	0.04	0.01	0.13	0.19	0.099	080.0	45 6	62 (6 1	11	21 9	98 24	1.6
# #	遏工	30.4		7.6	33.2	4.4	14	8.8	6.4	4.5	3.9	1.4	1.1	0.45	0.02	0.32	0.10	0.040	0.020	43 2	59 (. 9	7 2	20 3	34 26	3.0
t H	上層	30.1	-	7.6	33.7	3.0) 16	8.5	6.3	4.3	3.8	1.6	1.2	0.45	0.02	0.39	0.11	0.047 0	0.028	38 2	29 (. 9	7 2	20 3	33 25	3.1
水道	遏工	29.4		7.9	29.4	1 5.6	3 24	7.9	6.3	4.2	3.7	98.0	0.64	0.10	0.01	0.16	0.12	0.053 0	0:030	18 2	23	4	7	19 2	28 22	1.9
事務所沖	下層	29.3	-	7.9	29.5	5.0) 23	8.0	6.2	4.1	3.6	0.89	19.0	0.10	0.01	0.18	0.12	0.055 0	0.033	17 2	23 ,	4	7	19 2	28 22	2.1
# H	遏工	30.5		7.9	26.9	9.9	39	12	7.2	5.3	4.5	1.1	0.55	0.01	<0.01	01.0	0.27	0.11 0	060.0	61 2	70 7	4	9	18 2	21 22	5.6
t H H	下層	30.2	5:0	8.0	26.9	5.3	3 47	12	7.1	5.4	4.5	1.6	0.55	0.01	<0.01	0.11 (0.26	0.11 0	060.0	73 2	70 7	4	9	18 2	21 22	5.4
七二五十	墨丁	30.1		7.7	30.8	6.7	7 23	7.8	0.9	4.1	3.6	0.71	0.43	> 10.0	<0.01	0.08	0.12	0.050 0	0:030	28 2	, 92	4	7	18 3	34 21	9.0
十八月 (王/L)	上層	29.3	0.0	7.7	31.6	5.0) 28	7.8	5.8	4.3	3.6	0.75	0.53	0.01	<0.01	0.16	0.12	0.057 0	0.038	22 2	, 92	4	7	18 3	34 21	0.7
# E	壓	30.2		8.8	30.4	9.6	3 37	14	7.1	5.4	4.2	5.6	1.3	0.88	0.02	0.02	0.30	0.16	0.140	190 2	22	4	6	22 2	25 23	13.0
ŧ ::	下層	29.7		9.1	30.5	8.8	3 39	14	7.1	5.1	4.2	2.7	1.4	96.0	0.03	0.02	0.32	0.16 0	0.140	180 2	21 ,	4	6	22 2	25 22	12.0
力书	墨丁	30.5	9	9.1	29.3	7.1	19	11	6.5	4.7	3.9	1.2	0.42	<0.01	<0.01	<0.02	0.12	0.034 0	0.015	100	24 ,	4	8	18 2	29 18	5.2
	上層	30.3	_	9.1	29.2	4.7	7 19	=	6.4	4.6	3.9	1.2	0.47	<0.01	<0.01	0.07	0.14 0	0.056 0	0.039	92 2	23	3	8	18 2	28 18	0.9
#. */	墨丁	30.0	90	9.0	29.8	7.1	1 21	11	6.4	4.7	4.0	1.0	0.45	<0.01	<0.01	0.02	0.11	0.032 0	0.014	93 2	22 :	3	7	16 2	26 16	4.9
t ti 用	屋上	29.8		9.2	30.0	6.3	3 21	11	9.9	4.6	4.0	1.0	0.45	<0.01	<0.01	0.02	0.12	0.033	0.015	94 2	, 25	4	8	18 3	31 18	4.9
幽	圏	29.6		8.9	33.0	7.0) 42	12	7.0	5.1	4.2	1.1	0.45	<0.01	<0.01	0.02	0.19	0.075 0	0.054	150 3	31	4	8	18 4	40 19	0.9
共 ূ州	屋上	29.5		4.	32.4	5.7	36	13	6.8	4.9	4.1	0.97	0.46	<0.01 <	<0.01	0.03	0.20	0.066	0.047	150 2	25	8	7	16 3	30 15	5.7
北	屋工	29.8	-	8.1	38.5	6.2	5 52	14	7.2	5.3	4.3	0.95	0.50	<0.01	<0.01	90.0	0.28	0.10	0.093	150 3	39	2	9	19 5	52 20	5.9
#L	上層	29.7	\dashv	8.6	39.3	5.9	9 58	14	7.0	5.4	4.3	1.1	0.50	<0.01	<0.01	0.08	0:30	0.110	960.0	140 3	39	4	6	19 5	52 20	6.8
·	屋山	29.6	- L	7.2	50.1	6.4	1 29	9.5	6.7	4.7	4.1	69.0	0.46	<0.01	<0.01	0.07	0.16	0.084 0	0.067	79 5	53 (5 1	10	21 7	78 24	3.2
7F.XE.ME	国	29.6		7.2	49.8	6.3	3 29	9.3	9.9	4.7	4.1	0.75	0.50	<0.01	<0.01	0.07	0.18	0.083	0.068	79 4	48	5	10	19 6	66 21	3.1
帽	上層	30.4	7.0	8.3	57.5	7.9	17	9.4	6.3	4.6	4.0	69.0	0.38	<0.01	<0.01	0.03	0.13	0.066	0.049	92 6	, 29	9	12 2	22 10	100 28	2.7
ET CO	压	29.6		8.4	29.0	0.9	16	8.8	6.3	4.4	4.0	1.2	0.44	<0.01	<0.01	90:0	0.12	0.074 0	0.054	78 6	69	6 1	12 2	22	110 29	3.0

表11 霞ヶ浦の現地測定及び水質分析結果(9月)

令和5年9月14日		ļ	ŀ	-	}	-	-	-	-	-	-			f	-	-	-	-	-	-	-	-	ŀ	=	-	-
车	超	光	透明度	光淵	Hd	EC	DO S	SS CO	doop do:	D TOC	DOC	ΝL	DTN	NO ₃ -N	NO ₂ -N	NH ₄ -N	TP	DTP PO₄	4	Chl.a Na	÷ e	· Mg ² +		Ca ²⁺ CÍ	. SO ₄ ²⁻	ίΣ
F F F F F F F F F F F F F F F F F F F	1木小店	(°C)	(m)	(m)	r) -	(mS/m)	(mg/L) (m	(mg/L) (mg/	ng/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) ((mg/L) (i	(mg/L) (m	(mg/L) (m	(mg/L) (m _i	(mg/L) (με	(hg/L) (mg/L)	/L) (mg/L)	-	(mg/L) (mg/L)	/L) (mg/L)	(L) (mg/L)	.) (mg/L)
# #	墨书	30.2	1		9.8	27.7	9.8	22 9.8	3 6.7	4.9	4.2	0.94	0.46	0.07	<0.01	0.02 0	0.10 0.	0.042 0.0	0.021	53 22	3	9	18	3 27	20	3.1
五年	圖	29	0.7	4. 8	9.8	27.8	7.3	22 9.5	5 6.5	4.7	4.2	0.95	0.52	60.0	<0.01	0.02 0	0.11 0.	0.043 0.0	0.024 4	49 22	3	7	18	3 27	20	3.0
i i	甲甲丁	28.9			7.9	26.3	8.4	19 9.4	4 6.8	2.0	4.3	1.1	0.75	0.27	0.05	0.02 0	0.12 0.	0.056 0.0	0.038	48 20	3	9	17	7 24	19	3.6
t E	屋上	29.2	'n	5.4	8.3	26.4	7.2	20 9.0	9.9	2.0	4.3	1.1	0.81	0.27	0.05	0.07 0	0.13 0.	0.061 0.0	0.043	43 20	3	9	16	3 24	19	3.7
# #	上層	29.3	G	7	7.7	29.0	8.2	16 9.6	6.9	2.0	4.5	1.0	0.50	0.04	0.01	0.02 0	0.12 0.	0.063 0.0	0.043	55 23	3	7	17	7 29	19	2.9
大 日 日	下層	28.6	s.		8.2	26.6	5.1	26 9.1	1 6.8	4.9	4.2	1.2	0.97	0.27	90.0	0.20 0	0.15 0.	0.073 0.0	0.057	28 20	3	9	16	3 24	19	3.9
· · · · · · · · · · · · · · · · · · ·	屋工	28.4	,		7.3	28.7	6.3	10 8.6	6.9	2.0	4.4	0.88	0.64	0.03	0.02	0.14 0	0.12 0.	0.078 0.0	0.061	22 25	5 3	7	18	33	19	2.2
ימיונה	屋屋	28.5	1.1	7	7.6	30.7	5.3	15 8.4	4 6.8	4.9	4.4	0.98	0.71	0.03	0.02	0.22 0	0.13 0.	0.083 0.0	0.066	16 25	5 3	7	18	3 32	19	2.3
技	国	7.72	ç	7	7.9	31.9	0.9	19 8.8	3 6.7	5.0	4.2	0.83	0.57	0.02	<0.01	0.12 0	0.14 0.	0.086 0.0	0.072	33 27	7 3	80	18	3 36	19	2.5
+ + *	上層	27.8	0.		7.9	31.9	5.9	15 8.3	3 6.6	5.0	4.2	0.87	0.55	0.01	<0.01	0.12 0	0.14 0.	0.086 0.0	0.071	28 27	7 3	7	18	3 36	19	2.5
######################################	上層	30.4	0	8	8.1	26.9	8.2	16 8.9	9 5.8	4.4	3.7	1.5	1.2	0.72	0.02	0.13 0	0.13 0.	0.052 0.0	0.034 6	63 22	2 4	9	18	3 26	22	4.4
t H H	下層	30	6.0		8.1	27.9	5.7	16 8.7	7 5.9	4.2	3.6	1.6	1.2	0.71	0.02	0.14 0	0.13 0.	0.053 0.0	0.036	55 22	2 4	9	18	3 26	22	4.5
州	屋工	30.1	0	8	8.9	26.7	12 2	28 11	9.9	2.0	4.0	1.0	0.43	<0.01	<0.01	0.02 0	0.13 0.	0.039 0.0	710.0	74 20	3	9	18	3 25	20	3.4
事務所沖	下層	29.5	0.0		9.1	26.7	9.1	29 11	9.9	4.9	3.9	1.0	0.42	<0.01	<0.01	0.02 0	0.12 0.	0.038 0.0	0.017	68 20	3	9	17	7 25	20	3.4
# H	遏工	30.3			8.3	22.4	10	29 10	6.3	4.8	4.0	1.5	0.77	0.32	0.02	0.02 0	0.16 0.	0.048 0.0	0.026	90 17	7 3	5	15	5 18	20	5.8
# H H	屋上	29.9	0.7	0.2	8.5	23.3	9.4	30 9.1	1 5.5	4.3	3.6	1.5	1.0	0.63	0.02	0.05 0	0.16 0.	0.037 0.0	0.020	63 17	7 3	2	16	3 16	23	7.4
ガ三番台	遏工	31.1	0	8	8.0	22.5	10	17 10) 6.2	4.7	3.9	1.0	0.44	0.03	<0.01	0.02 0	0.10 0.	0.026 0.0	0.004	73 15	5 3	5	15	5 19	20	5.1
十八二十八十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	国国	30.3	э Э		8.8	22.8	7.0	19 8.4	4 6.3	4.6	4.0	0.87	92.0	0.11	<0.01	0.06 0	0.11 0.	0.047 0.0	0:030	34 18	3 3	9	15	5 22	17	4.1
1 /2	上層	28.9	ш	7	7.7	21.9	10	15 9.2	5.7	4.0	3.4	2.80	2.40	2.30	0.04	0.02 0	0.10 0.	0.026 0.0	0.012	88 11	3	9	16	3 15	20	9.0
±	国国	28.1	0.0		8.2	22.3	8.4	16 8.7	7 5.4	3.9	3.4	2.80	2.40	2.30	0.04	0.02 0	0.10 0.	0.027 0.0	0.013	86 11	3	9	16	3 15	20	9.1
月书	壓出	29.2	α	1 8	8.0	27.5	8.3	10 8.7	7 6.5	5.2	4.2	1.1	0.97	0.54	60.0	0.02 0	0.111 0.	0.073 0.0	0.061	57 21		80	17	7 27	17	1.5
+ + + + + + + + + + + + + + + + + + + +	压	28.1	0	_	7.8	27.4	3.6	13 8.1	6.4	4.9	4.2	1.2	1.0	0.64	90.0	0.18 0	0.12 0.	0.084 0.0	0.076	40 21	3	7	17	7 26	17	2.0
# %	屋工	28.9	10	7	7.5	28.2	7.4	10 8.4	4 6.4	5.3	4.2	1.1	0.91	0.56	0.02	0.04 0	0.10 0.	0.063 0.0	0.051	54 23	3 3	8	17	7 29	17	6.0
t t	上層	27.9	ò		7.7	28.9	4.3	15 8.5	5 6.7	5.1	4.2	1.1	0.95	0.61	0.02	0.13 0	0.10 0.	0.068 0.0	090.0	36 23	3	8	17	7 29	17	1.0
鹿	壓	28.3	9	7	7.3	29.4	6.7	13 8.4	1 6.4	5.3	4.1	1.1	06.0	0.57	0.01	0.03	0.10 0.	0.060 0.0	0.048	55 23	3	80	17	7 29	17	1.0
大順大	屋上	27.8	0.0		7.5	29.1	3.8	15 8.1	1 6.2	5.6	4.1	1.1	0.95	0.58	0.02	0.09 0	0.10 0.	0.062 0.0	0.053	39 23	3	80	17	7 29	17	1.2
中	屋工	28.3	3 0		6.7	30.6	5.9	25 9.2	6.4	5.7	4.1	1.1	0.88	0.52	0.02	0.04 0	0.10 0.	0.052 0.0	0.040	54 25	5 3	8	17	7 32	17	1.1
₽ # #	图	28.2	0.0	7	7.0	30.8	5.2	34 9.7	7 6.4	5.4	4.1	1.1	0.87	0.52	0.02	0.06 0	0.12 0.	0.053 0.0	0.042	48 25	3	8	17	7 31	17	1.1
# # # # # # # # # # # # # # # # # # #	上層	28.4		9	9.9	32.9	6.7	16 8.9	6.9	4.9	4.2	09:0	0.44	60:0	0.01	0.05 0	0.12 0.	0.073 0.0	0.065	39 29	9 4	8	18	39	19	2.7
77.XX.Z.M	严	28.4	ò		8.6	33.0	6.1	16 8.9	6.9	4.9	4.2	0.67	0.43	60:0	0.01	0.05	0.12 0.	0.075 0.0	0.065	40 29	9 4	80	17	7 39	19	2.6
草	四十	28.7	90		7.3	33.1	5.7	20 8.5	6.8	4.9	4.2	0.62	0.45	60:0	0.02	0.10	0.12 0.	0.080	0.073	35 29	4	80	18	39	19	2.6
ELL VOV	严	28.6			7.4	33.1	5.7	24 8.9	6.9	4.9	4.2	0.69	0.45	60.0	0.02	0.11 0	0.12 0.	0.080 0.0	0.074	36 29	4	∞	18	39	19	2.6

表12 霞ヶ浦の現地測定及び水質分析結果(10月)

令和5年10月24	4日	1																								
\$ T	村	水温 透	透明度 水深	Hd K	EC	DO :	o ss	COD	dcob	тос	DOC	N	DTN NO	NO ₃ -N NC	NO ₂ -N NH	NH4-N	TP DT	DTP PO ₄ -P	-P Chl.a	l.a Na ⁺	·¥	Mg ²⁺	Ca ²⁺	_IO	SO ₄ ²⁻	Si
是 日 日	沐小店	(°C)	(m) (m)	- (1	(mS/m)	/m) (mg/	/L) (mg/L)	(mg/L)	(mg/L)	(mg/L) ((mg/L) (n	(mg/L) (r	(mg/L) (mg	(mg/L) (m	(mg/L) (mg	(mg/L) (mg	(mg/L) (mg	(mg/L) (mg/L)	/L) (µg/L)	(L) (mg/L)	(mg/L)) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
# #	墨丁	19.5		8.2	28.0	9.8	3 25	9.2	5.7	5.0	3.9	1.0	0.59 0.	0.15 0	0.01 0.0	0.03 0.11	11 0.025	0.006	90 28	3 22	4	7	19	27	22	4.3
大胆氧	下層	19.3	0.0	8.2	28.1	8.4	31	9.0	5.8	4.9	3.8	1.1	0.61 0.	0.18 0	0.01	0.06 0.12	12 0.024	24 0.008	38 55	5 21	4	7	19	26	22	4.5
in H	屋工	19.0	90	8.1	28.1	8.3	3 26	9.3	6.3	4.8	4.0	1.2	0.80	0.27 0	0.04 0.0	0.07 0.12		0.036 0.017	17 62	2 22	3	7	17	26	21	4.8
大兆峘	屋上	19		8.2	27.6	3 7.9	33	9.5	6.4	5.1	4.0	1.4	0.80	0.27 0	0.04 0.	0.09 0.15	15 0.038	38 0.019	19 57	7 22	3	7	18	56	21	4.9
# # H	上層	18.9		8.1	28.1	8.1	21	8.8	6.2	4.6	3.9	1.1	0.67 0.	0.20 0	0.03	0.06 0.11	11 0.029	29 0.013	13 51	1 22	3	7	17	27	21	4.1
T III	下層	19.2		8.2	28.3	8.0) 25	9.1	6.2	5.1	3.9	1.2	0.69 0.	0.19 0	0.03	0.07 0.12	12 0.031	131 0.014	14 55	5 23	3	7	18	27	21	4.1
石	上層	18.8	0	8.4	43.8	8.4	15	8.4	6.4	5.1	4.0 0	0.75 (0.43 <0	<0.01	<0.01 <0.	<0.02 0.088	88 0.031	31 0.016	16 42	2 26	4	7	18	34	21	1.4
יט' אָשּי	下層	18.9	_	8.2	31.6	8.4	15	8.3	6.1	5.1	4.0 0	0.76	0.42 <0	<0.01	<0.01 <0.	<0.02 0.090	90 0.031	31 0.016	16 43	3 26	4	7	18	33	20	1.4
大七	屋工	18.8	2 +	8.3	36.4	1 9.1	19	9.7	6.7	5.0	4.2 0	0.81	0.42 <0	<0.01 <0	<0.01 <0.	<0.02 0.098		0.020 0.005	05 20	33	4	8	19	44	21	2.4
	下層	18.7		8.3	35.3	9.0	18	9.3	6.5	4.9	4.0 0	0.91	0.40 <0	<0.01 <0	<0.01 <0.	<0.02 0.097	97 0.021	121 0.006	06 49	32	4	8	19	43	21	2.4
5 5 十	上層	20.4		8.5	28.6	9.5	5 16	8.1	5.4	3.8	3.2	1.7	1.2 0.	0.81 0	0.02 0.	0.02 0.095		0.019 0.003	33 90	21	4	9	20	24	25	7.0
T.H.T	下層	20.2	0.7	8.4	28.6	9.2	2 18	8.4	5.5	3.8	3.2	1.7	1.2 0.	0.81 0	0.02 0.0	0.03 0.10		0.019 0.004	04 84	1 21	4	9	20	25	25	7.2
州	屋工	19.9		8.5	27.9	10	28	10	5.7	4.5	3.5	1.4	0.65 0.	0.21 0	0.01 <0.	<0.02 0.14		0.029 0.005	05 120	0 21	4	7	19	52	23	5.1
事務所沖	下層	19.5	0.5 2.9	9.8	28.5	9.0	39	9.2	5.0	4.2	3.4	1.1	0.75 0.	0.32 0	0.01	0.04 0.13	13 0.020	20 0.005	05 64	1 21	3	7	20	25	23	0.9
#E	墨丁	19.3		8.3	23.3	8.8	3 24	8.8	4.9	3.9	3.1	1.9	1.4 0.	0 26.0	0.04 0.	0.03 0.14	14 0.025	0.006	96 94	15	2	9	17	14	56	8.3
± E H E	下層	19.2	6.1	8.2	23.2	8.1	31	8.0	4.8	3.8	3.0	2.0	1.4 0.	0 96:0	0.04 0.0	0.06 0.15	15 0.025	25 0.008	08 64	1 15	2	9	17	14	56	8.5
打三 組 七	墨丁	20.3	10	8.6	30.4	11	24	9.6	5.8	4.6	3.8 0	0.91	0.41 <0	<0.01	<0.01 <0.	<0.02 0.11		0.020 0.003	99 EC	3 24	3	7	19	31	24	2.9
1,11/11/T	下層	19.4		8.7	30.1	9.0) 26	8.8	5.8	4.5	3.7	1.0	0.44 0.	0.04 <0	<0.01 <0.	<0.02 0.12	12 0.021	121 0.005	09 90) 23	3	7	19	29	24	3.6
# E	上層	19.7		8.1	28.8	3 9.5	5 40	8.7	3.8	3.4	2.4	3.8	3.3 3.	3.10 0	0.03 <0.02	0.18		0.018 0.006	96 94	17	3	6	20	70	56	12.0
ŧ i	下層	19.7	0.4	8.2	28.6	3 9.2	2 44	8.5	3.8	3.5	2.4	4.1	3.3 3.	3.10 0	0.03	0.02 0.18		0.017 0.006	91	17	3	6	20	21	56	12.0
月书	屋工	20.3	8	8.0	28.2	8.2	17	8.2	6.0	4.4	3.8	1.5	1.2 0.	0 69:0	0.10	0.04 0.085	85 0.023	23 0.005	05 64	1 21	က	80	18	26	19	2.5
t t	四四	19.9		8.1	28.6	3 7.8	3 18	8.5	6.0	4.5	3.8	1.6	1.2 0.	0 69.0	0.10	0.06 0.088		0.028 0.005	05 63	3 21	က	80	17	26	19	2.5
# %	上層	19.6	0	8.2	28.7	7 8.4	15	8.9	6.2	4.8	4.1	1.1	0.73 0.	0.26 0	0.04	0.04 0.078	78 0.019	119 0.003	33 62	2 22	က	80	17	28	18	8.0
t H	国上	19.5		8.2	28.7	7 8.2	2 18	9.0	6.1	4.9	4.0	1.1	0.77 0.	0.26 0	0.04 0.	0.05 0.090		0.018 0.002	02 59	9 22	8	80	17	28	18	8.0
鹿島	上層	18.8	9	8.2	29.7	7 8.4	1 21	9.3	6.4	2.0	4.0	1.0	0.56 0.	0 60:0	0.02 0.	0.03 0.098	_	0.015 0.002	02 70) 24	3	8	17	30	19	6.0
大順大	下層	19.0		8.3	29.5	8.4	1 21	9.2	6.5	4.9	4.0	1.0	0.55 0.	0 60:0	0.02 0.	0.03 0.092		0.017 0.002	02 69	9 24	3	8	17	30	19	8.0
井	上層	18.8	- 10	7.8	33.4	1 9.2	2 29	10	6.5	4.7	4.0 0	06.0	0.43 <0	<0.01	<0.01 <0.	<0.02 0.11		0.019 0.002	22 80	30	က	80	18	38	19	1.4
E 11	国上	19.0		8.0	33.6	3 9.2	2 29	10	6.7	4.7	4.0 0	0.95	0.42 <0	<0.01	<0.01 <0.	<0.02 0.11		0.017 0.002	02 79	30	4	80	18	38	19	1.5
# # # # # # # # # # # # # # # # # # #	上層	18.8		7.5	37.4	1 8.0) 25	8.7	6.5	4.6	4.0 0	0.64	0.49 0.	0.02 0	0.01 0.	0.04 0.10	_	0.029 0.017	17 52	36	4	6	19	49	21	3.0
7. XX	壓上	18.8		7.5	37.3	3 7.8	3 26	8.8	6.4	4.6	4.0 0	0.79	0.47 0.	0.02 0	0.01	0.04 0.11		0.030 0.017	17 51	36	4	6	19	48	21	3.0
血	上層	20.6		8.0	38.0	6 (16	9.8	6.5	4.6	4.0 0	0.62	0.40 <0	<0.01	<0.01 <0.	<0.02 0.084		0.025 0.012	12 52	36	4	6	19	49	22	2.7
é E	壓	20.5		8.1	38.3	8.8	3 15	8.5	6.4	4.4	3.9 0	0.59	0.37 <0	<0.01	<0.01 <0.	<0.02 0.084	84 0.025	25 0.012	12 52	36	4	6	19	49	22	2.7

表13 霞ヶ浦の現地測定及び水質分析結果(11月)

令和5年11月13	38																										
‡ V	古 日 日	水温 勝	透明度	光	Hd	EC	DO	SS	COD	dCOD	TOC D	Doc	N L	NTO	NO ₃ -N NC	NO ₂ -N NH ₄ -N		TP D	ртР Ро	PO₄−P Chi.	.a Na ⁺	<u>+</u>	+ Mg ²⁺	g ²⁺ Ca ²⁺	_t Cl_	SO ₄ ²⁻	Σ
10000000000000000000000000000000000000	1本八八百	(°C)	(m)	(m)	u) –	(m/Sm)	(mg/L) ((mg/L) ((mg/L) ((mg/L) (i	(mg/L) (m	(mg/L) (mg	(mg/L) (m	(mg/L) (mg	(mg/L) (mg	(mg/L) (μg/	(mg/	(mg/L)	/L) (mg/L)	/gm)	/L) (mg/L	L) (mg/L)	(mg/L)				
九田平	墨丁	16.6			6.1	27.3	8.2	34	8.6	2.7	4.5	3.5	1.2 0	0.85 (0.22 0	0.01 0.27	27 0.	13	0.032 0.01	019 46	3 23	4	7	19	32	26	4.4
年四十	下層	16.5	5.0	4.0	6.3	29.3	7.2	20	8.9	5.1	4.8	3.3	1.3 0	0.97	0.30 0	0.01 0.31		0.16 0.0	0.030 0.0	0.020 38	3 23	4	7	20	32	27	4.8
i i	屋工	16.1	0		6.9	28.8	7.2	38	9.2	5.5	4.8	3.6	1.4	1.0	0.34 0	0.07 0.24		0.15 0.041		0.029 38	3 22	3	7	18	30	25	4.9
t t e	屋上	16.3	ر د.		7.0	28.2	7.1	89	10	5.5	5.4	3.6	1.6	1.0	0.35 0	0.07	0.25 0.	0.40 0.1	0.190 0.1	0.180	1 22	4	7	18	30	25	5.1
# #	四里十	16.4	L		7.0	36.3	7.9	19	8.7	5.9	5.1	3.9 0.	0.91	09:0	0.05 0	0.01 0.14		0.12 0.0	0.048 0.0	0.037 42	2 27	4	8	19	40	24	1.0
大川州	屋上	16.3	0.5	/.0	7.3	29.7	7.7	38	9.7	2.7	5.1	3.5	1.4 0	0.97	0.34 0	0.06 0.22		0.16 0.0	0.038 0.0	0.027 54	1 23	3	7	18	30	25	4.8
4 第	下層	16.5	9		6.5	30.7	8.2	18	8.6	5.9	4.9	3.8 0.	0.84 0	0.59 (0.02 0	0.01	0.15 0.0	0.097 0.0	0.031 0.01	39	9 26	4	8	19	38	24	1.0
, FE	屋上	16.5	0.0	0.0	9.9	31.4	8.4	18	8.5	0.9	5.3	3.8 0.	0.82	0.56 (0.01 <0	<0.01 0.1	0.15 0.	0.10 0.0	0.035 0.0	0.023 33	3 27	4	8	19	40	24	0.7
五七世	屋工	15.7	<u>u</u>		7.7	39.4	8.5	27	9.1	0:9	5.1	3.8 0.	0 77.0	0.43	<0.01 <0	<0.01 0.0	0.05 0.	0.11 0.0	0.023 0.01	111 48	3 24	3	7	17	34	20	0.4
大州楼	屋上	15.7	0.0	0.	7.8	33.5	9.6	31	9.3	0.9	5.2	3.8 0.	08.0	0.43	<0.01 <0	<0.01 0.05		0.11 0.0	0.024 0.0	0.011 49	9 27	4	8	19	40	24	0.4
5 サ 十	屋工	17.7		,	6.3	30.3	7.0	15	7.8	5.2	4.1	3.1 2	2.2	2.0	1.3 0	0.03 0.26		0.10 0.0	0.026 0.0	0.015 59	3 27	5	7	22	35	33	8.1
十二十	壓	17.4		-	6.5	33.1	0.9	19	7.5	4.9	3.9	3.0	2.3	5.0	1.3 0	0.03 0.31		0.11 0.0	0.028 0.0	0.019 40	72 (2	7	22	35	33	8.3
水道	屋工	16.3	0	9	9.9	29.6	7.6	31	7.9	4.8	3.9	2.9 2	5.0	1.6	1.0 0.1	0.02 0.3	0.32 0.	0.14 0.0	0.031 0.0	0.021 41	1 24	4	7	22	32	31	7.9
事務所沖	屋上	15.8	2.		6.7	31.3	7.3	32	7.7	4.8	3.7	2.8	1.9	1.7	1.1	0.02 0.32		0.13 0.0	0.032 0.0	0.023 37	7 24	4	7	22	32	31	8.4
が 日 日 日	上層	15.7			6.3	23.0	7.1	37	9.6	4.6	3.8	2.7	1.9	1.4	0.88 0	0.04 0.21		0.18 0.0	0.034 0.0	0.024 67	7 18	2	9	17	18	29	8.5
± E H	屋上	15.7	2.0	9	6.4	24.6	7.3	41	8.5	4.5	3.9	2.7	1.9	1.4 (0.85 0	0.04 0.22		0.19 0.0	0.035 0.0	0.025 59	18	2	9	17	18	29	8.6
1/11 2日 1/1	屋山	16.1	-		0.9	33.7	8.7	31	9.3	5.9	4.8	3.6	1.0 0.1	0.55 (0.08	<0.01		0.14 0.0	0.028 0.0	0.014 67	7 29	4	80	20	45	27	2.2
±/11/1#17	壓	16	t.		6.3	34.0	8.3	35	9.2	5.9	4.6	3.7	1.0	0.58	0.09	<0.01 0.13		0.15 0.0	0.026 0.01	015 60	29	4	∞	20	44	27	2.3
# = =	屋山	14.9	-	000	7.0	31.4	8.1	33	6.7	2.7	2.8	1.8	4.7	4.0	3.7 0	0.03 0.07		0.15 0.0	0.031 0.0	0.022 61	1 20	3	10	0 21	28	30	13.0
+	壓	14.5	t.		7.0	31.8	8.0	35	6.7	2.7	5.9	1.8	4.4	3.9	3.7 0	0.03 0.07		0.15 0.0	0.032 0.0	0.022 66	3 20	3	10	0 21	27	30	13.0
5 ‡ †	四十	17.3		7	7.5	30.5	7.8	20	8.9	5.4	4.8	3.7	1.7	1.1	0.52 0	0.06 0.20	\dashv	0.088 0.0	0.016 0.0	0.004 66	3 23	3	8	18	32	22	2.3
++=	壓	17.0	5.		7.7	29.8	9.7	20	8.9	2.7	4.7	3.7	1.7	1.2	0.54 0	0.06 0.21		0.090 0.0	0.016 0.0	0.004 62	2 22	က	∞	18	32	22	2.4
;; ;;	壓出	14.1		9	6.9	31.3	7.7	19	9.4	2.7	5.2	3.9	1.5	0.97	0.30 0	0.04 0.20		0.091 0.0	0.019 0.0	0.007 68	3 23	3	∞	18	33	21	1.5
t H	區	16.4	5		7.6	28.5	7.5	20	9.2	5.4	4.9	3.8	1.5	0.98	0.29 0	0.04 0.20		0.11 0.0	0.016 0.0	0.003 67	7 23	3	80	18	33	21	1.5
鹿島	四十	15.0	ر د	a c	7.5	30.0	7.7	27	10	9.6	4.9	3.8	1.4	0.82	0.16 0	0.02 0.20		0.11 0.0	0.016 0.0	0.003 79	9 25	в	80	18	37	22	1.7
大順大	屋上	15.6	3	\dashv	7.6	31.0	7.7	29	10	9.6	4.8	3.8	1.3	0.82	0.16 0	0.02 0.2	0.20 0.	0.11 0.0	0.016 0.0	0.003 80) 25	3	80	18	37	22	1.7
北中韓	四十	14.7	LE C		7.4	38.3	8.1	37	10	2.7	4.9	3.8	1.0	0.57 (0.04 0	0.01 0.1	0.12 0.	0.12 0.0	0.019 0.0	0.006 84	1 38	4	6	19	58	24	2.4
E	屋上	15.1	3.		7.7	39.0	7.9	36	10	5.9	5.0	1.0	1.0	0.55 (0.04 0	0.01	-	0.13 0.0	0.020 0.0	0.007	38	4	6	19	59	25	2.5
# # # # # # # # # # # # # # # # # # #	四十	15.4	L.		8.4	48.1	7.5	27	8.2	5.4	4.6	3.9	0.85	0.65	0.111 0	0.02 0.1	0.13 0.	0.11 0.0	0.029 0.0	0.016 39	9 20	2	10	02 00	87	28	3.0
III/7/X//	壓	16.0	3	-	8.2	46.9	7.1	26	8.1	5.5	4.5	3.8 0.	0.80	0.68	0.11 0	0.02 0.1	0.13 0.	0.10 0.0	0.029 0.0	0.016 39	9 20	2	10	0 20	86	28	3.2
草	四	17	0	0	6.9	68.1	8.0	15	7.7	5.5	4.6	3.8 0.	0.56 0	0.46	0.05 0	0.01 0.04		0.076 0.0	0.018 0.0	0.006 43	80	9	14	4 22	160	38	2.7
动	严	16.9	n.		7.4	67.7	7.9	15	7.6	5.6	4.4	3.8 0.	0.62 0	0.50	0.04 0	0.01 0.04		0.077 0.0	0.020 0.0	0.006 42	2 81	9	14	4 22	160	38	2.6
			l		İ	l		l	Ì	l																İ	ì

表14 霞ヶ浦の現地測定及び水質分析結果(12月)

令和5年12月5日	目																									
李 七 夕	与	水温透	透明度 水深	Hq.	EC	DO	SS	COD	dCOD	TOC	DOC	N	DTN N	NO ₃ -N	NO ₂ -N NF	NH ₄ -N	тР р	ртР Рс	PO ₄ -P C	Chl.a Na	+	¥ W	Mg ²⁺ C	Ca ²⁺ Ci	- SO ₄	Si
中世界	1本八万百	(0,0)	(m) (m)	-	(mS/m)	n) (mg/L)	(L) (mg/L)	.) (mg/L)	(mg/L)	(mg/L)	(mg/L) (r	(mg/L) (i	(mg/L) (n	(mg/L) (n	(mg/L) (m	(mg/L) (n	(mg/L) (m	(mg/L) (m	(mg/L) μ	(μg/L) (mg/L)	y/L) (mg/	y/L) (mg/	î	(mg/L) (mg/L)	/L) (mg/L)	(mg/L)
# #	四四四	6.6		7.8	28.3	01	20	7.6	5.2	4.7	3.3	=	0.88	0.45	0.02 0	0.07 0.	0.086 0.	0.020	0.004	44 23		4		19 29	24	3.7
大胆麻	區	10.3	0.5	7.9	29.9	10		7.7	5.5	4.6	3.3	1.1	0.89	0.45	0.02 0	0.08	0.087 0.	0.019 0	0.004	45 23		4	7	19 28	23	3.7
大 H	墨丁	8.6		8.1	25.5	9.7	27	7.9	5.1	4.5	3.3	1.3	1.10	0.76	0.01	0.02	0.11 0.	0.022 0	0.005	42 22		3	7	18 25	23	5.1
t E	上層	10.1	7.4	8.1	28.0	9.8	26	7.7	5.0	4.5	3.3	1.4	1.10	0.76	0.01	0.02	0.111 0.	0.021 0	0.005	42 22		3	7	18 25	23	5.1
# #	墨丁	10.4		8.2	29.1	9.5	17	7.3	5.4	4.8	3.6	1.0	0.77	0.39	0.01	0.06	0.084 0.	0.020	0.005	33 23		3	1 1	17 27	19	2.7
大四半	下層	10.5	0.7 0.0	8.1	30.4	9.5	18	7.5	5.7	4.7	3.6	1.0	0.80	0.41	0.01	0.06	0.085 0.	0.020	0.005	33 25		4	7 1	18 31	22	2.7
4	墨丁	10.2	9	8.2	31.2	10	12	7.9	0.9	2.0	3.8	97.0	0.52	0.09	0.01	0.04 0.	0.069 0.	0.018 0	0.002	36 27		4	7	19 35	21	1.0
יטיאמי	下層	10.7	0.0	8.2	32.1	10	14	8.1	5.9	4.9	3.8	0.84	0.51	0.09	0.01	0.04 0.	0.071 0.	0.017 0	0.002	38 27		4	8	19 36	22	0.9
5. 七	墨丁	9.5	9	8.3	35.7	10	17	9.8	6.3	5.3	3.9	08.0	0.41	<0.01	<0.01 <0	<0.02 0.	0.087 0.	0.021	0.003	46 30		4 8	8	19 39	22	0.9
t H &	下層	10.1		8.4	33.9	10	17	8.9	6.0	5.2	3.9	0.79	0.40	<0.01	<0.01 <0	<0.02 0.	0.090 0.	0.020	0.003	43 30		4	8	19 39	21	0.0
5	墨丁	10.6	30	7.9	29.9	9.7	15	6.5	4.5	3.9	5.9	1.8	1.60	1.30	0.02 0	0.06	0.075 0.	0.015 0	0.002	41 26		2	7 2	21 30	28	9.9
± ≡ T	下層	10.9		7.9	32.5	9.3	16	6.5	4.7	3.9	5.9	1.8	1.70	1.30	0.02 0	0.07	0.082 0.	0.014 0	0.003	36 26		2	7 2	21 30	28	6.7
水道	墨丁	8.6	30	7.9	30.0	10	20	8.1	5.0	4.6	3.4	1.0	080	0.34 (0.02 0	0.09	0.082 0.	0.021	0.004	51 24		4	7 2	20 30	23	3.4
事務所沖	下層	10.1		8.0	30.2	10	19	8.1	5.0	4.7	3.4	0.98	0.77	0.33	0.02 0	0.09	0.086 0.	0.021 0	0.004	47 24		4	7	19 30	23	3.3
Ħ H	壓出	9.4	30	8.1	25.0	Ξ	21	7.3	4.2	3.9	5.6	1.9	1.40	1.00	0.04 0	0.02	0.10 0.	0.022 0	0.005	72 18		2	9	18 17	25	8.0
+ H H	下層	9.7		8.1	25.5	11	22	7.3	4.1	4.0	5.6	1.5	1.40	1.00	0.04 0	0.02 0	0.10 0.	0.021	0.005	64 18		2	1	18 17	25	7.9
中川温川	四十	10.4		7.8	31.3	=	15	8.3	5.5	4.9	3.6	08.0	0.62	0.19	0.02 <0	<0.02 0.	0.075 0.	0.022 0	0.005	66 26		4	8	19 33	23	2.5
T/11/1#17	下層	10.3		8.0	32.1	=	14	7.0	5.1	4.4	3.3	08.0	0.72	0.36	0.02 0	0.02 0.	0.075 0.	0.017 0	0.002	38 25		4	8	21 32	26	4.4
見	四里十	8.8		8.4	35.3	=	19	5.4	2.4	1.7	1.4	9.6	5.3	2.0	0.03 <0	<0.02 0.	0.074 0.	0.016 0	900:0	50 24	_	3	10	22 29	27	15.0
ţ	四四四四四四四四四四四四四四四四四四四四四四四日	8.9		8.5	35.1	11	20	5.7	2.4	1.9	1.4	5.4	5.3	2.0	0.03 <0	<0.02 0.	0.080 0.	0.017 0	900:0	56 23		3	10 2	22 29	27	15.0
力出	壓出	10.5	0.7	8.5	31.0	10	20	8.7	5.1	4.2	3.3	1.8	1.4	1.0	0.03	0.18 0.	0.076 0.	0.013 0	0.002	81 22		°	6	19 28	21	4.2
+ + + + + + + + + + + + + + + + + + + +	四四四	10.2		8.6	30.8	6.6	21	9.6	5.0	4.7	3.3	2.0	4.1	1.0	0.03	0.18 0.	0.076 0.	0.012 0	0.001	78 23		8	9	19 28	21	4.0
# *	四里十	10.5	7.0	8.7	31.1	10	19	10	6.1	5.3	3.7	1.3	0.86	0.40	0.02 0	0.09	0.073 0.	0.015 0	0.002	91 25		3	9	18 31	20	1.6
t H	严	10.8		8.8	31.1	10	19	10	5.5	5.3	3.8	==	0.91	0.41	0.02 0	0.09	0.074 0.	0.015 0	0.002	89 24		3	8	18 30	20	1.7
鹿島	四里十	8.6	200	8.1	32.7	10	27	11	6.1	5.6	3.8	0.93	09:0	0.20	0.02 0	0.02 0.	0.085 0.	0.017 0	0.002	93 28		3	9	18 36	20	1.5
大 <u></u> 煙大	四四四	10.1		8.2	32.6	10	27	=	5.7	5.5	3.8	0.92	0.61	0.19	0.02 0	0.02	0.091 0.	0.017 0	0.002	91 28		8	9	18 36	21	1.5
北	四十	9.6		8.3	42.5	10	20	10	5.9	5.3	3.8	0.63	0.41	<0.01	<0.01 <0	<0.02 0.	0.092 0.	0.019 0	0.003	84 44		1	10	20 60	24	1.6
# 1	四	8.6		8.4	42.5	10	23	10	5.9	5.2	3.8	92.0	0.38	<0.01	<0.01 <0	<0.02 0.	0.095 0.	0.019 0	0.003	83 43		4	01	20 58	24	1.6
押押が	壓出	6.6	00	7.2	44.0	9.5	14	7.5	5.5	4.7	3.8	0.64	0.42	0.04	0.01	0.02 0.	0.060 0.	0.017 0	0.002	39 44		2	6	20 62	24	1.9
7 / / / / / / / / / / / / / / / / / / /	下層	9.6		7.4	44.3	9.1	14	7.7	5.5	4.7	3.8	0.65	0.41	0.04	0.01	0.02 0.	0.061 0.	0.016 0	0.002	39 44		2	6	20 62	24	1.9
血	上層	11.4	11	8.1	64.7	10	12	7.8	5.7	4.9	3.8	0.59	0.38	<0.01	<0.01 <0	<0.02 0.	0.051 0.	0.016 0	0.002	77 74		6	13	22 120	33	2.1
EI NOV	严	11.7	\dashv	8.2	71.3	9.8	7	7.9	5.5	4.7	3.8	0.63	0.39	0.01	0.01 0	0.02 0.	0.059 0.	0.016 0	0.002	41 83		1	14	22 140	34	2.1

表15 霞ヶ浦の現地測定及び水質分析結果(1月)

令和6年1月15	5B		-	-	-	-		-	-	-	-	-	-								-		-	-	-	ŀ	
李	四十四	不過	透明度 7	光	Hd	EC	DO	SS COD	doob do	DD TOC	c Doc	N.F	DTN	NO ₃ -N	NO ₂ -N	NH⁴-N	TP	DTP	PO ₄ -P	Chl.a	Na⁺	<u>-</u>	Mg ²⁺	Ca ²⁺ C	CI_ S(SO ₄ ²⁻	Si
H H	1 * // =	(°C)	(m)	(m)	- (r	(mS/m) (r	(mg/L) (n	(mg/L) (mg/	(mg/L)	(L) (mg/L)	(L) (mg/L)	(L) (mg/L)	_) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) ((μg/L) (m	(mg/L) (m	(mg/L) (n	(mg/L) (n	(mg/L) (mg/	\Box	(mg/L) (n	(mg/L)
方 田 幸	上層	7.5			7.8	31.3	10	13 7.4	4 5.5	5 4.7	3.7	0.95	0.71	0.29	<0.01	20'0	0.061	0.017	0.001	28	27	4	8	20 3	33 2	24	2.3
大胆麻	下層	6.7	8.0		7.8	32.7	10	14 7.2	2 5.4	4.6	3.6	1.0	0.77	0.34	<0.01	80'0	690.0	0.017	0.001	28	26	4	8	20 3	33 2	24	2.5
in H	上層	6.1	o C		7.7	28.6	10	14 7.2	2 5.3	3 4.9	3.6	1.1	0.88	0.47	<0.01	0.13	0.064	0.014	0.002	36	24	3	8	19 2	29 2	24	3.4
大 毛	圖上	6.2			7.8	30.9	10	18 7.4	4 5.1	1 5.0	3.6	1.2	06:0	0.46	<0.01	0.15	0.071	0.015	0.001	36	24	3	8	19 2	29 2	23	3.5
5 対 H	上層	9.9			7.7	31.5	10	14 7.5	5 5.6	3 5.2	3.9	0.84	0.59	0.15	<0.01	0.08	0.063	0.015	0.001	33	28	4	8	19 3	36 2	23	1.3
H H	下層	6.3	0.0	6:0	7.7	32.7	11	15 7.7	7 5.8	3 5.2	3.9	0.89	0.61	0.14	<0.01	80'0	0.074	0.014	0.001	32	59	4	8	20 3	37 2	23	1.3
4,5	上層	6.2	0		9.7	31.1	10	10 7.5	5 5.8	3 5.1	3.9	0.79	0.58	0.09	<0.01	0.11	0.050	0.015	0.001	29	28	4	8	19 3	37 2	22	1.3
יטיאמי	下層	6.3			7.6	33.0	10	11 7.5	.5 5.8	3 5.1	3.9	08:0	0.62	0.09	<0.01	0.11	0.065	0.013	<0.001	28	28	4	8	19 3	37 2	22	1.3
5世	上層	5.8	·		7.1	35.8	11	11 7.5	.7 5.7	7 5.1	3.9	0.76	0.47	0.05	<0.01	0.04	0.058	0.016	0.001	31 (33	4	8	20 4	45 2	23	1.3
t H K	下層	5.9			7.2	37.0	10	10 7.6	6 5.6	5 5.1	3.9	0.77	0.46	0.05	<0.01	0.03	0.074	0.017	<0.001	34 ;	33	4	8	19 4	45 2	23	1.3
5 サ 十	上層	7.4			7.7	35.8	11	13 7.0	0 5.0	0 4.6	3.4	2.0	1.6	1.3	0.01	0.03	0.077	0.017	0.002	47 :	30	2	8	23 3	35 2	29	5.1
t T	下層	7.5	0.0	0.0	7.7	34.5	10	12 7.0	.0 5.0	0 4.3	3.3	1.6	1.5	1.3	0.01	0.04	0.063	0.017	0.002	39	30	2	8	22 3	35 2	29	5.2
州州	上層	6.7			7.8	31.5	10	15 6.8	8 4.9	9 4.0	3.2	1.5	1.1	0.88	0.01	90.0	0.082	0.015	0.003	30	27	4	8	22 3	32 2	27	5.3
事務所沖	下層	6.4	0.7	7.7	7.8	33.9	10	16 6.8	8 4.8	3 3.9	3.2	1.4	1.2	0.86	0.01	80'0	0.075	0.015	0.002	30	27	4	8	22 3	33 2	27	5.0
# H	上層	6.3	7		7.9	26.2	11	17 7.0	7.0 4.0	4.4	2.7	1.8	1.3	1.0	0.02	0.07	0.087	0.022	900.0	48	21	2	7	19 2	20 2	26	7.5
t H H	下層	6.1		0.2	7.9	27.8	10	17 6.7	6.7 3.9	9 4.1	2.7	1.7	1.4	1.1	0.02	60'0	0.086	0.021	0.005	43	21	2	7	19 2	20 2	27	8.1
中川温川	上層	7.1	7	90	7.7	34.3	10	13 7.1	.1 5.2	4.9	3.7	0.83	0.65	0.19	<0.01	0.13	0.077	0.016	0.002	35	30	4	8	20 3	39 2	24	2.5
ナイルノギハト	下層	6.5			7.6	35.8	10	16 7.2	.2 5.2	4.5	3.6	1.0	0.82	0.27	0.01	0.17	0.081	0.015	0.001	22	31	4	6	21 4	40 2	26	3.5
類 目	上層	9.9	7		8.0	35.9	10	11 4.4	4 1.9	1.7	1.3	5.7	5.6	5.4	0.04	0.02	0.072	0.009	0.004	34	23	3	11	23 2	28 2	28	15.0
ţ	下層	9.9	\dashv	1.7	8.1	35.4	10	13 4.3	3 1.9	1.7	1.3	5.8	5.5	5.4	0.03	<0.02	0.075	0.010	0.004	35	24	3	=	23 2	29 2	28	15.0
方 中 市	上層	8.9	7	,	8.4	32.2	10	15 8.7	7 5.2	5.3	3.7	1.5	1.1	0.74	0.02	0.07	0.067	0.012	0.001	: 29	25	3	6	19 3	32 2	22	2.3
±	下層	7.0			8.6	32.9	10	16 8.0	0 4.6	3 4.9	3.3	2.1	1.7	1.2	0.03	0.12	0.085	0.011	0.001	57	24	3	6	20 3	31 2	22	4.5
# *	上層	6.9	0		8.5	32.6	10	15 9.0	0 5.5	5 5.5	3.8	1.4	0.97	0.57	0.02	90'0	0.076	0.011	<0.001	69	26	3	6	19 3	32 2	21	1.5
t t	下層	7.2		-	8.7	32.7	10	15 9.2	2 5.0	5.5	3.8	1.5	1.0	0.56	0.02	90.0	0.072	0.009	<0.001	73	26	3	6	19 3	33 2	21	1.5
幽	上層	9.9	0	000	8.5	33.8	11	17 9.5	5 5.4	1 5.8	3.9	1.3	0.84	0.37	0.02	0.05	0.069	0.011	<0.001	: 77	29	3	6	19 3	37 2	21	1.2
大順大	下層	8.9			8.7	34.6	11	18 9.4	4 5.4	1 5.8	3.9	1.3	0.77	0.35	0.01	0.04	0.070	0.011	0.001	. 92	59	3	6	19 3	37 2	21	1.2
北	上層	0.9	9		8.3	51.6	11	19 9.3	3 5.5	5 5.9	3.9	06:0	0.40	<0.01	<0.01	60.0	0.089	0.014	0.002	72	99	2	11	22 8	82 2	28	1.4
	下層	6.2	\dashv	-	8.7	51.2	=	20 8.8	8 5.5	5 5.8	3.9	0.89	0.39	<0.01	<0.01	0.02	0.085	0.014	0.001	72	55	2	=	21 8	81 2	28	1.4
押押	壓出	6.2	0		8.2	83.1	10	12 7.6	6 4.9	9 5.2	3.9	99.0	0.38	<0.01	<0.01	<0.02	0.065	0.011	0.001	48	96	7	16	23 14	140	38	1.5
EL 7627 17	上層	6.2	_	_	8.2	78.5	10	12 7.5	5 5.0	5.2	3.9	0.73	0.38	<0.01	<0.01	<0.02	0.073	0.012	<0.001	44	95	7	15	24 14	140	38	1.5
血	上層	7.7	80		7.7	97.4	10	11 7.8	8 5.1	5.3	3.9	99.0	0.37	<0.01	<0.01	<0.02	0.063	0.013	<0.001	40 1	120	7	19	25 20	200	46	1.7
ET/S)	上屋	7.5			7.9	6.99	10	9 7.6	6 5.2	5.1	3.9	09:0	0.36	<0.01	<0.01	<0.02	0.071	0.013	<0.001	41	120	8	19	25 20	200	46	1.7

表16 霞ヶ浦の現地測定及び水質分析結果(2月)

令和6年2月8E	В																										
# 4 4	14	水温	透明度 水	水深	Hd	EC	DO	ss co	٥	dCOD TOC	oc Doc	C TN	DTN	NO ₃ -N	I NO ₂ –N	NH ₄ -N	ТР	DTP	PO ₄ -P	Chl.a	Na⁺	*	Mg ²⁺	Ca ²⁺	Cľ 8	SO ₄ ²⁻	is
F F F	1本小店	(°C)	(m)	(m)	- (n	(m/S/m)	(mg/L) (m	(mg/L) (mg/	7	(mg/L) (mg/L)	(/L) (mg/L)	/L) (mg/L)	L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(hg/L)	(mg/L)	(mg/L) ((mg/L) ((mg/L) (n	(mg/L) (r	(mg/L) (n	(mg/L)
¥	壓丁	6.2			3.6	30.7	12	11 7.	7.9 5.	5.7 5.0	.0 3.7	7 0.92	99'0	0.29	<0.01	0.05	0.057	0.015	0.002	34	27	4	8	19	34	24	1.2
女正女	圖	5.9	0.8	7.3	7.6	31.9	12	10 7.	8	5.9 5.0	.0 3.7	0.90	0.65	0.28	<0.01	<0.02	0.062	0.016	0.002	38	56	4	7	19	34	24	1.2
7. 14	墨丁	5.5			7.3	7.72	12	15 8.	2	5.4 5.2	.2 3.5	5 1.3	0.94	0.62	<0.01	0.03	0.072	0.016	0.002	22	24	3	7	19	27	24	2.2
天	严	5.6	8.0	7	7.5	30.1	1	25 8.	8	5.4 5.2	.2 3.5	5 1.4	0.98	0.63	<0.01	0.05	0.090	0.016	0.002	52	23	က	7	18	27	24	2.6
; ;	壓	5.5			7.0	27.6	12	16 8.	0	5.5 5.1	.1 3.6	1.1	0.78	0.43	<0.01	0.04	0.067	0.015	0.002	22	25	က	7	19	31	24	1.7
는 미 비	下層	5.5	8.0	7	7.2	32.5	10	1 1	10 5.	5.7 5.	.5 3.7	7 1.2	0.73	0.23	<0.01	0.15	0.15	0.013	0.002	44	27	3	8	19	35	23	1.5
4	遏工	5.2	0	9	6.5	30.2	12	12 8.	0	5.9 5.2	.2 3.8	8 0.87	0.63	0.20	<0.01	0.04	0.062	0.015	0.001	51	28	4	8	19	37	23	0.8
(1) FE	圖上	5.4			6.5	32.9	12	11 8.	0	5.8 5.2	.2 3.9	9 0.88	0.63	0.21	<0.01	0.04	0.061	0.015	0.001	42	28	4	8	19	37	23	6.0
中	墨丁	5.2	00	7	7.9	38.4	13	16 9.	0	6.2 5.9	.5 3.8	8 0.75	0.45	0.05	<0.01	0.05	0.081	0.016	0.002	51	36	4	8	19	48	24	0.7
t H Š	上層	5.2		_	7.9	38.6	12	15 8.	7	5.9 5.5	.5 3.8	8 0.88	0.42	0.05	<0.01	<0.02	0.085	0.017	0.002	55	35	4	6	19	48	24	0.7
	遏工	7.8			9.9	33.4	7.0	14 9.	0	5.5 5.0	.0 3.5	5 2.0	1.8	1.1	0.01	0.27	0.097	0.020	0.004	22	30	5	7	21	36	28	3.2
t H	国国上	7.6		9.5	8.9	34.7	5.8	12 7.	9	5.6 4.4	.4 3.5	5 2.0	1.9	1.2	0.01	0.29	0.082	0.016	0.003	42	30	5	7	20	36	27	3.3
水道	墨丁	6.9	90	7	7.5	31.0	11	15 8.	0	5.0 4.7	.7 3.4	1.0	0.0	0.56	0.01	0.03	0.074	0.016	0.003	33	56	4	7	20	33	25	2.7
事務所沖	圖上	6.3			7.5	32.1	1.1	15 7.	2	4.8 4.6	.6 3.4	1.1	1.0	0.63	0.01	0.05	0.074	0.016	0.003	35	56	4	7	20	33	25	3.1
ガロHモ	遏工	5.8		7	7.5	24.7	11	15 7.	7.6 4.	4.6 4.7	.7 3.0	0 1.3	1.1	0.82	0.01	0.04	0.077	0.018	0.003	43	22	2	7	18	23	26	4.1
た ミ H ヨ	下層	5.9	7.0		7.6	28.3	11	16 7.	4	4.5 4.6	9.0	0 1.3	1.1	0.83	0.01	0.04	0.079	0.017	0.003	43	22	3	7	18	23	26	4.2
中田国小	遏工	6.4	90	7	7.5	34.4	11	14 7.	6	5.4 4.9	.9 3.4	1.1	0.80	0.46	0.01	0.04	690'0	0.017	0.004	42	59	3	8	20	38	28	3.1
ナノニノモノレ	图	9		_	7.5	35.2	9.4	37 8.	4	4.9 4.4	.4 3.2	1.1	0.97	0.57	0.01	0.12	0.11	0.015	0.004	56	59	3	8	21	38	59	4.4
5 3 8	遏工	6.1	0	7	9.7	32.1	11	9 5.	-	3.1 2.4	.4 2.1	1 4.5	4.4	4.2	0.05	0.13	080'0	0.020	0.012	25	20	3	10	20	25	28	13.0
ţ	图	9			7.7	31.9	11	11 4.	6	3.0 2.3	.3 2.0	0 4.9	4.5	4.3	0.05	0.10	0.079	0.018	0.011	27	20	3	10	21	25	28	13.0
月前	甲甲丁	5.7	0	7,	7.5	32.3	12	13 7.	6	4.9 5.3	.3 3.4	4 1.9	1.4	1.0	0.05	0.08	0.067	0.014	0.002	59	25	3	6	20	32	22	3.2
F 75	下層	5.8			7.7	32.6	11	11 7.	6	5.0 5.2	.2 3.5	5 2.0	1.4	0.99	0.05	0.00	0.069	0.012	0.002	63	25	3	6	19	32	22	3.1
E S S S	上層	5.7	00	7	7.4	33.0	11	12 8.	7	5.2 6.0	.0 3.8	1.4	1.0	0.51	0.01	0.10	0.065	0.014	0.001	71	27	3	6	19	35	21	1.3
Ė Ħ	严	5.9			7.6	33.3	1	13 9.	0	5.2 6.0	.0 3.8	8 1.5	1.0	0.53	0.01	0.11	0.068	0.013	0.002	89	27	က	6	19	35	21	1.3
鹿島	上層	5.8			7.3	36.9	12	15 9.	2	5.2 6.1	.1 3.8	1.3	0.83	0.39	0.01	90.0	0.073	0.013	0.001	61	33	3	10	19	44	22	1.2
大順大	国业	5.8			7.4	37.1	11	14 9.	2	5.4 6.0	.0 3.8	8 1.3	0.88	0.38	0.01	0.07	0.074	0.014	0.001	69	33	4	10	19	44	23	1.2
井の井	甲甲丁	5.8	4	9 ,,	6.9	49.0	11	19 9.	2	5.3 6.3	.3 3.7	7 1.1	99.0	0.21	0.01	0.04	960'0	0.016	0.002	61	20	4	10	20	75	27	1.2
<u>=</u> 	屋上	5.9			6.9	48.9	=	22 9.	0	5.0 6.1	.1 3.7	7 1.1	0.64	0.21	0.01	0.04	0.094	0.014	0.002	62	21	4	=	20	9/	27	1.2
5 元	屋山	5.6	7.0	9	6.5	63.8	12	15 8.	0	5.0 5.3	.3 3.8	8 0.91	0.49	0.10	<0.01	0.05	0.088	0.016	0.002	09	73	2	13	22	120	33	1.1
17 JK JC H	壓	5.8			6.9	63.0	11	16 7.	6	5.3 5.0	.0 3.8	8 0.87	0.52	0.10	<0.01	0.05	0.077	0.017	0.002	56	72	2	12	22	110	33	1.1
塩	上層	7	90	7	7.2	6.77	10	16 7.	7.9 5.	5.4 5.4	.4 3.8	8 0.77	0.45	0.02	<0.01	<0.02	0.082	0.015	0.001	99	93	9	15	24	160	38	0.7
ET/69/	屋上	7.2			7.3	77.8	12	15 7.	6	5.5 5.4	.4 3.8	8 0.77	0.45	0.03	<0.01	<0.02	0.086	0.015	0.001	63	94	9	15	24	160	38	8.0

表17 霞ヶ浦の現地測定及び水質分析結果(3月)

令和6年3月2E								·															٠	:	•		
ž V	村屋	大温	透明度	光	Hd	EC	DO	SS	СОБ	доор т	TOC D	DOC	TO NT	DTN NO ₃ -N	3-N NO ₂ -N	N−₄HN N−	N-	DTP	PO ₄ -P	Chl.a	Na	<u>+</u>	Mg ²⁺	Ca ²⁺	ات ات	SO ₄ ²⁻	Si
년 년	1米小店	(°C)	(m)	(m)	1	(mS/m)	(mg/L) ((mg/L) (m	g/L)	(mg/L) (m	(mg/L) (m	(mg/L) (mg	(mg/L) mg	(mg/L) (mg/L)	/L) (mg/L)	'L) (mg/L)	/L) (mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (r	(mg/L) ((mg/L) ((mg/L)
; H	屋工	8.8	L		9.8	32.0	11	22	8.2	4.7	5.1	3.5 0.8	0.80 0.43	43 0.06	0.0) 0.01	11 <0.02	0.075	5 0.014	0.002	37	27	4	7	19	35	25	0.2
大眠無	严	8.7	6.0	2.4	9.8	32.2	=	25	9.5	5.8	5.8	4.1 0.8	0.80 0.43	43 0.06	0.07	11 <0.02	0.075	5 0.014	0.001	51	27	4	7	19	35	25	0.2
1. 14	屋工	8.5	o c		7.7	30.5	12	13	8.8	4.9	5.1	3.4 1.	1.0 0.58	58 0.22	22 <0.01	1 <0.02	0.083	3 0.016	0.001	62	25	4	7	18	31	24	0.1
天	壓	8.7	9.0	υ.	8.1	30.9	12	24	8.7	6.4	5.4	3.5 1.	1.0 0.56	56 0.22	22 <0.01	11 <0.02	0.081	1 0.015	0.001	72	26	4	7	19	31	24	0.1
# #	圖工	8.1	ď	;	8.2	31.6	=	23	8.3	5.2	2.0	3.6 0.8	0.87 0.50	50 0.13	13 <0.01	11 0.02	12 0.083	3 0.014	0.002	62	27	4	7	19	35	24	0.1
t H	下層	8.3	0.0	1.,	8.2	32.2	11	28	8.9	4.9	2.0	3.6 0.91	91 0.50	50 0.13	13 <0.01	1 0.02	0.099	9 0.013	0.001	63	27	4	7	19	35	23	0.2
4 另	屋工	7.7		-	8.2	30.6	11	17	8.4	5.0	5.4	3.6 0.7	0.78 0.42	42 0.05)5 <0.01	1 <0.02	0.066	6 0.013	0.001	59	28	4	7	19	37	23	0.1
(1) (M)	下層	8.1	0.7	0.0	8.3	33.2	11	18	8.2	4.9	5.2	3.6 0.7	0.75 0.42	42 0.05	0.01	1 <0.02	0.067	7 0.013	0.001	64	28	4	7	19	37	23	0.1
技	国工	7.7	2	-	9.1	34.5	12	39	9.6	5.1	5.8	3.6 0.8	0.83 0.36	36 <0.01	10:0>	1 <0.02	0.11	0.015	0.002	67	30	4	8	19	40	24	0.1
t H \$	上層	7.8	4.0	/	9.1	34.5	12	36	9.5	5.3	5.8	3.6 0.8	0.83 0.34	34 <0.01	0.01	1 <0.02	0.11	0.015	0.002	48	30	4	8	19	39	24	0.1
5 サ 十	墨丁	8.6	7		8.7	34.9	10	25	8.3	5.4	4.9	3.3 1.	1.6 1.3	.3 0.92	92 0.01	1 0.06	0.10	0.016	0.002	29	30	5	7	21	36	28	1.6
t T	下層	10.2	0.4	0.0	8.7	35.2	10	28	8.7	2.5	4.6	3.3 1.	1.7 1.3	.3 0.92	92 0.01	1 0.07	7 0.12	0.016	0.002	58	29	5	7	21	36	28	1.6
水	国工	9.2	2	0	8.7	32.1	=	33	8.4	5.1	4.6	3.3 1.	1.1 0.74	74 0.43	13 0.01	1 <0.02	0.11	0.016	0.003	37	26	4	7	20	32	56	1.6
事務所沖	屋上	9.1	,	0.7	9.8	32.0	=	34	8.5	5.1	4.5	3.2 1.	1.0 0.74	74 0.43	13 0.01	1 <0.02	0.11	0.016	0.003	30	26	4	7	20	32	56	1.6
担 日 日	屋コ	8.5	C C	-	7.7	27.2	11	35	8.3	4.4	4.5	2.7 1.	1.1 0.90	99.0 0.66	36 0.01	1 <0.02	0.13	0.015	0.003	54	21	3	7	17	21	27	2.8
t E H E	上層	8.3	0.0	1.7	8.1	27.6	11	37	7.4	4.4	4.1	2.7 1.	1.3 0.91	91 0.65	35 0.01	1 <0.02	0.14	0.016	0.003	38	21	3	7	18	22	27	2.8
大三番人	上層	8.7	2	L.	8.5	34.4	=	35	8.4	5.5	5.6	3.4 0.81	81 0.46	46 0.10	10 <0.01	1 <0.02	0.11	0.015	0.002	53	30	4	8	20	39	27	1.0
±/11/1#,17	屋上	8.7	t.	0.0	9.8	34.4	12	32	8.5	9.6	2.0	3.4 0.6	0.68 0.44	44 0.10	10 <0.01	1 <0.02	0.11	0.015	0.002	47	29	4	8	20	38	56	1.0
# E	国工	10.2	9	c	6.9	30.7	=	17	5.9	3.4	2.3	1.8 4.	4.5 4.2	2 4.0	0.03	3 0.04	0.096	6 0.019	90000	41	21	4	10	21	25	28	13.0
ţ	屋上	9.6	9.	6.2	7.0	31.7	=	23	6.3	2.7	2.4	1.9 4.	4.0 3.9	9.8	8 0.03	3 0.03	13 0.10	0.019	90000	41	21	4	10	21	25	28	13.0
力	圖	9.3	a C	7.0	7.1	32.4	12	16	9.0	2.0	5.1	3.4 1.	1.4 1.2	.2 0.90	90 0.01	1 0.04	14 0.071	1 0.014	0.001	82	26	4	6	19	34	22	2.6
t	屋上	9.0	9	7 : /	7.3	32.5	=	19	9.0	4.9	5.1	3.4 1.	1.4 1.2	.2 0.91	10.01	1 0.05	5 0.082	2 0.015	0.001	82	26	4	6	19	34	22	2.6
;; ;;	屋コ	9.0			7.8	33.1	11	18	9.5	5.1	5.4	3.5 1.	1.2 1.0	0.66	36 0.01	1 0.05	0.070	0.013	0.001	80	28	4	6	19	36	22	1.7
t H	屋上	8.8	ò	†	7.8	33.6	=	21	6.6	5.3	5.3	3.6	1.4 1.0	.0 0.65	35 0.01	1 0.05	5 0.083	3 0.015	0.001	85	28	4	6	19	36	22	1.8
鹿	屋コ	9.1		0	9.9	35.9	11	23	10	5.1	5.5	3.6 1.	1.1 0.72	72 0.41	11 0.01	1 <0.02	0.089	9 0.015	0.001	74	33	4	6	19	44	23	1.2
大順大	国	9.0	0.7	0.0	7.1	37.5	11	21	10	5.2	5.4	3.6 1.	1.2 0.72	72 0.41	11 0.01	1 <0.02	0.088	9 0.016	0.002	87	33	4	10	19	45	23	1.2
华	上層	8.9	9	-	7.2	43.6	12	31	10	5.1	2.0	3.5 1.	1.0 0.56	56 0.22	22 0.01	1 <0.02	0.10	0.015	0.002	92	43	5	10	20	19	25	1.0
₽	屋上	8.8	0.0	7:1	7.4	44.1	11	35	10	5.2	2.0	3.6 1.	1.1 0.57	57 0.22	22 0.01	1 <0.02	0.12	0.016	0.001	93	43	4	10	20	09	25	1.0
5 元	屋山	7.8	7.0	7	8.2	48.0	Ξ	28	9.0	5.4	5.3	3.7 0.7	0.72 0.36	36 <0.01	10.07	11 <0.02	0.10	0.016	<0.001	85	48	2	10	20	71	27	0.1
T.XX.T.	壓	7.9	ò	-	8.2	47.3	=	28	9.2	5.1	4.9	3.7 0.7	0.77 0.36	36 <0.01	10.07	11 <0.02	0.10	0.017	<0.001	77	49	5	10	21	72	27	0.1
塩	屋工	9.5	α	0	8.9	49.3	12	22	9.3	5.1	5.3	3.7 0.6	0.69 0.36	36 <0.01	0.01	11 <0.02	0.084	4 0.015	<0.001	73	54	2	10	21	82	28	<0.1
<u>i</u>	压	6	3	P	7.2	51.2	12	30	9.3	9.9	4.9	3.8 0.8	0.80 0.49	49 <0.01	01 <0.01	1 <0.02	0.092	2 0.046	0.002	77	54	2	10	21	82	59	<0.1

1-4 霞ヶ浦におけるアオコ発生状況について

1 事業目的

アオコの発生は、水面を緑色に呈して景観を悪化させるだけでなく、集積した場合には、腐 敗して悪臭の原因となる。このため、アオコの原因である植物プランクトンの集積を防止する ために、湖水表面の撹拌や回収などの対策が講じられている。これらの対策を効果的に実施す るためには、アオコの発生場所を把握することが必要である。そこで本事業の目的は、アオコ の原因となる藍藻類の出現状況を把握して、関係機関等に迅速に情報提供するとともに、アオ コの発生要因について検討し、発生予測の精度を上げることとした。令和5年度においても、 霞ヶ浦全域においてアオコの発生状況を調査したので、報告する。なお、西浦と北浦のアオコ 発生は令和元年度から低頻度で推移していることから、令和4年度以降事業を縮小化し、調査 地点及び調査頻度を変更した。

2 方法

(1) 調査地点(図1)

調査地点は霞ヶ浦湖内水質等モニタリング事業と同地点とした。すなわち、土浦沖、水道事務所 沖、掛馬沖、湖心、山王川沖、高浜沖、玉造沖、小野川沖及び麻生沖の西浦9地点、巴川沖、武井 沖、釜谷沖、鹿島水道沖及び神宮橋に、外浪逆浦及び息栖を加えた北浦7地点からなる合計 16 地 点である。

(2) 調査時期・頻度

令和5年6月から9月まで、月に1回の頻度で実施した。

(3) 調査項目

rクリル製カラム(Φ =10 cm)を用い、水面から20 cm深さまでの湖水を3度採水してバケツに集め、 湖水試料とした。試料は現地で水温を測定するとともに、1Lのポリエチレンビンに採取して、実験室 へ持ち帰った。

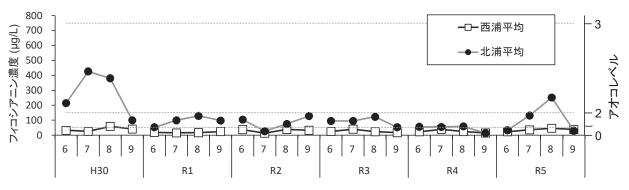
(4) 分析項目及び測定方法

分析項目は、全窒素(TN)、全りん(TP)、硝酸態窒素(NO₃-N)、亜硝酸態窒素(NO₂-N)、 アンモニア態窒素 (NH_4-N) 、りん酸態りん (PO_4-P) 、フィコシアニン (Phc) 及びクロロフ

ィル a (Chl.a) とした。TN 及び TP の測定には、 連続流れ分析装置 (BLTEC SWAAT28) を用い た。NO₃-N、NO₂-N、NH₄-N 及び PO₄-P の分析 には、粒子保持能 1 μm のろ紙 (Whatman GF/B) で懸濁物を除去したろ水を、連続流れ分析装置 (SEAL QuAAtro2-HR) で測定した。Phc の測定 は福島ら¹⁾を参考にし、分光蛍光光度計(JASCO FP-8500) を用いて 640 nm の蛍光強度から算出 した。Chl.a は、新編湖沼調査法²⁾を参考に、ユ

図 1 調査地点図

ネスコ法に準拠して行った。すなわち、分光光度計 (SHIMADZU UV-2550) を用い、750 nm、663 nm、645 nm、630 nm の吸光度を測定し、濃度を算出した。なお、Phc 及び Chl.a は粒子保持能 1.2 μm (Whatman GF/C) でろ過したろ紙上の残留物を、-30℃で一昼夜凍結後、それぞれリン酸緩衝液 (pH=7.0) 及びエタノールで抽出して試料とした。


3 令和5年度のアオコ発生状況

(1) 令和5年度のフィコシアニン濃度の推移(表1及び図2)

令和5年度のフィコシアニン濃度は、西浦は概ね昨年度と同等であったが、北浦は昨年度より上昇した。過去5年間と比較すると、西浦は過去と同程度であったが、北浦は平成30年度に次ぐ高濃度の月が見られた。

	H30	R1	R2	R3	R4	R5
西浦平均	41	17	32	27	22	36
北浦平均	298	97	85	99	56	111

表 1 各年度における西浦と北浦の平均フィコシアニン濃度(µg/L)

注: H29 から R3 までは毎週調査を行っていたため、月平均値を示す。

図2 西浦平均と北浦平均における6月から9月のフィコシアニン濃度の変化

(2) 各地点のフィコシアニン濃度の変化(図3)

西浦のフィコシアニン濃度は、調査期間中、多くの地点でアオコレベル 0 相当 (1未満)の

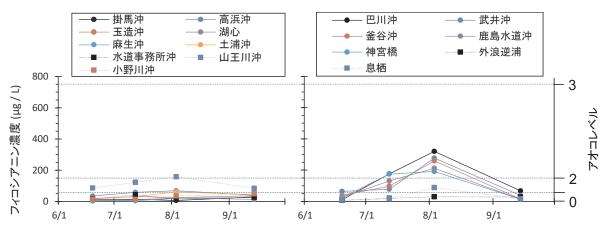
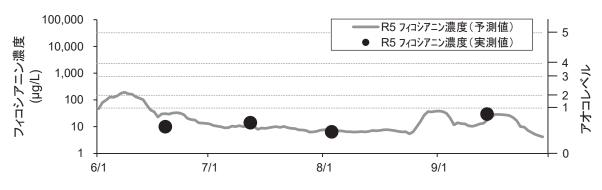



図3 西浦9地点(左)と北浦7地点(右)における、フィコシアニン濃度の経時変化

低濃度で推移した。最大値は、山王川沖で8月3日に観測された158 µg/L (アオコレベル2相 当)であった。北浦のフィコシアニン濃度は、アオコレベル0~2相当で推移した。最大値は、 巴川沖で8月3日に観測された320 μg/L(アオコレベル2相当)であった。

4 アオコ予測システムの検証結果(図4)

霞ケ浦環境科学センターで構築したアオコ予測システムを用いて、令和5年5月24日に、令 和5年度夏の土浦入におけるアオコ予測を行った。使用したデータは、気象庁から同年2月21 日に発表された関東甲信地方の暖候期予報及び4月25日に発表された3か月予報である。その 結果、令和5年度の掛馬沖のアオコは、令和4年度と同程度のアオコレベル0~1程度以下で 推移するとされた。この予測値に対し、本年度の実測値を比較した結果、よく合致していた。

注:第1軸(フィコシアニン濃度)は対数で示す

図4 5月24日に算出した掛馬沖におけるアオコ予測の結果と実測値との比較

5 まとめ

令和5年度のアオコの発生は、フィコシアニン濃度から見ると西浦では例年同様にアオコレ ベル0相当、北浦では最大でアオコレベル2相当となった。また、アオコ予測システムによる 令和5年度の予測結果は、実際の発生状況と合致した。

6 参考文献

- 1) 福島武彦, 相崎守弘 編,1995. アオコの計量と発生状況, 発生機構-アオコ指標検討会資料-. 国立環境研究所業務報告, F-72´95
- 2) 西條八束, 三田村緒佐武, 1995. 新編 湖沼調査法. 講談社サイエンティフィク, 東京, 189-192.

1-5 流入河川の浄化効果検証に関する調査研究

1 はじめに

山王川の水質や負荷量の経時的変動を調査し、県が重点的に山王川流域で実施する小規模事業所の 規制強化対策による負荷削減効果を検証することを目的とした。

※ 飲食店等の小規模事業所からの排水について、県では、茨城県霞ケ浦水質保全条例を平成31年3月に改正、令和3年4月に施行し、規制を強化している。

2 方法

(1) 調査地点(図1)

山王川 4 地点 (St.1~4)

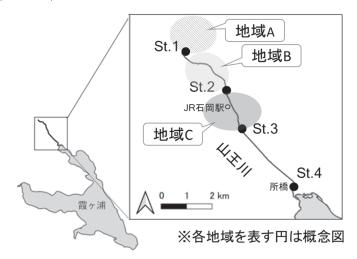


図1 調査地点

【備考】· St.1:柏原池公園南側。上流には工業団地

・ St.2: 石岡駅北側。St.1 と St.2 の間は水田と小規模事業所及び住宅地

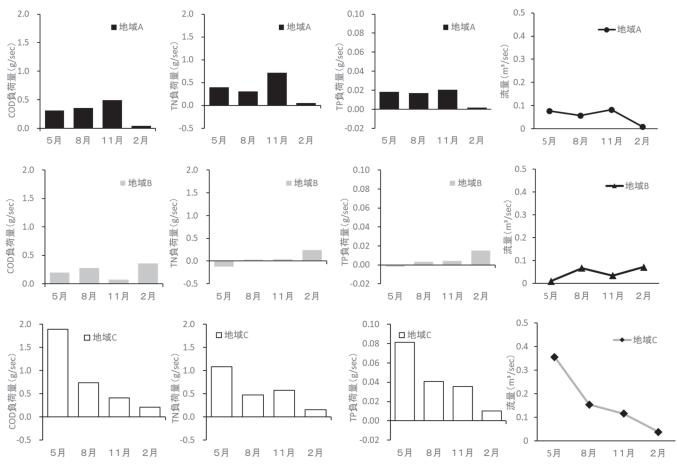
• St.3: 石岡駅南側。St.2 と St.3 の間は駅を中心とした市街地

St.4:環境基準点(所橋)。山王川の最下流に位置。St.3とSt.4間は主に水田

(2) 調查年月

令和5年5月、8月、11月、令和6年2月

(3) 分析項目


流量、化学的酸素要求量 (COD)、全窒素 (TN)、全りん (TP) 等

3 結果と考察

(1) 負荷量の算出

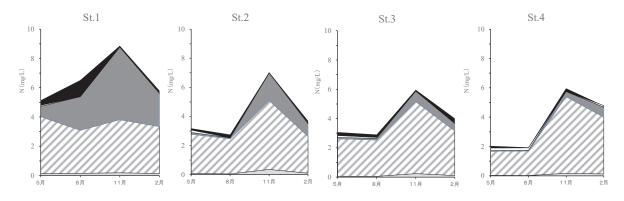
各調査地点での流量および水質から負荷量を算出し、さらに、下流側の調査地点における流量および負荷量から上流側におけるそれを差引くことで、これらの調査地点間の流量及び負荷量を以下のとおり地域別に算出した。

- 地域 A: St.1 での流量および負荷量
- 地域 B: St.1 と St.2 間の流量および負荷量(St.2 から St.1 を差引)
- 地域 C: St.2 と St.3 間の流量および負荷量(St.3 から St.2 を差引)
 - ※ St.3~4間の負荷量は算出しなかった。St.4は、St.3の流量をたびたび下回った。St.4では 霞ヶ浦の水位の影響を受けて正確な流量が測定できなかったと考えられた。

(2) 令和5年度の負荷量の推移(図2)及び年間平均負荷量(表1)。

地域 A~C の負荷量および St. 1~3 の流量の月次変化 図 2

地域 A は他地域と比較して流量は少なく、2月を除き流量はおおむね一定であったが、COD、 TN、TPともに2月に流量が小さく負荷量が少なかった。

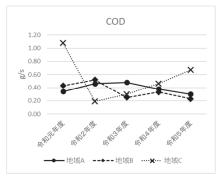

地域 B の流量は5月を除きおおむね一定で、負荷量は地域 A・C に比べると少なめであった。 地域 C は、5月に流量及び負荷量が多くなり St.2、St.3 の間にある市街地からの流入が考えら れた。

_	Д. д.	グロー リストラエス	0 %ii = 1 1 1 1 0	1 0, 0, 1., 10 IH	- 1 - 737
	地域	COD (g/s)	TN (g/s)	TP (g/s)	流量(m³/s)
•	地域A	0.30	0.37	0.014	0.06
	地域 B	0.23	0.05	0.005	0.05
	地域 C	0.81	0.57	0.042	0.17

各地域の平均負荷量及び流量(令和5年5,8,11,令和6年2月) 表 1

(3) 形態別窒素濃度変化(図3)

各地点とも硝酸態窒素が主であるが、St.1ではアンモニア態窒素も多く、工業団地からの排水の 影響があったと考えられ、下流に行くほどアンモニア態窒素の割合は少なくなった。全窒素濃度は St.1 で最も高く、下流で低くなり、St.2~4 は同程度であった。



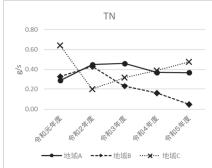

■懸濁態窒素 ■亜硝酸態窒素 ☑硝酸態窒素 ■アンモニア態窒素 □その他の可溶態窒素

図3 St. 1~4の形態別窒素濃度変化

(4) 令和元年度からの負荷量の推移(図4)

令和5年度のCOD、TN、TPの負荷量は、地域B及びCにおいて、令和元年度に比べ低下していた。本調査は、小規模事業所の規制強化を目的とした条例改正の効果の把握を目的としているが、令和2~3年度は、新型コロナ感染症対策として緊急事態宣言が発令されており、令和4年度は、緊急事態宣言の発令はないものの、茨城県独自の判断指標「茨城版コロナNext」による注意喚起がなされたことから、飲食店等の営業に影響が生じ、負荷量が低下した可能性がある。一方、令和5年度は新型コロナウイルス感染症が感染症法上の位置付けで5類となったことから通常の社会状況であったと考えられ、令和元年度と比較して負荷量が低下していたことは当該地域において規制強化による効果があった可能性がある。

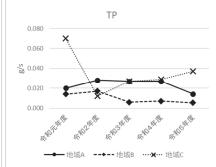
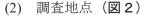


図4 令和元年度から令和5年度の負荷量変化

1-6 ハス田の汚濁負荷に関する調査研究

1 目的


茨城県の特産物の一つであるレンコンは、県内では大部分が霞ヶ浦沿岸で栽培されてい る。レンコン栽培は、水稲に比べて施肥量が多いことや、「水堀り」と呼ばれる収穫作業に 伴う濁水の発生などから、霞ヶ浦への環境負荷の発生が懸念されている。本調査では、ハス 田群における流入水および流出水の水質調査を行い、ハス田からの汚濁負荷に関する基礎資 料を得ることを目的とした。

2 方法

(1) 調査地区(図1)

土浦市手野地区 (148.6 ha)

※備考:手野地区の用水は西浦湖岸の第 一機場(図2中の❶)と境川脇の第二機場 (同2)から各圃場に送水される。第一機 場では地区内の排水(同 A)と西浦からの 取水(同 B)を合わせて送水し、第二機場で は境川から取水・送水する(同 C)。また、 地区の北西部で境川の支流から分岐する 水路(通称「手野川」。同 D)から地区内の 排水路に続く水流がある。

A:第一機場取水口付近の排水路

B:霞ヶ浦 (西浦)湖水 C: 境川からの取水地点

D: 境川支流 (手野川)からの流入地点

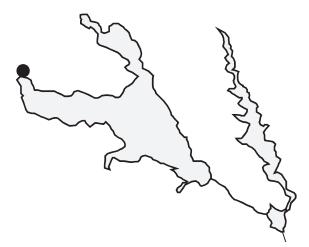


図1 調査地区地図

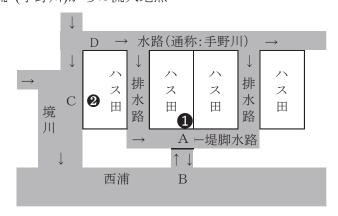


図2 調査地区(手野地区)の概略図 (A~D:調査地点、**①②**:機場位置、矢印:水流方向)

- (3) 調査期間 令和5年4月~令和6年3月(令和元年から継続)
- (4) 調查頻度 月1回
- (5) 調査項目 水温、pH、EC、SS、COD、TN、TP

3 結果の概要

各調査地点における水質調査結果を、分析項目ごとに月別にして図3から図6に示す。なお、A地点は霞ヶ浦 (西浦)への流出水であり、B地点は霞ヶ浦 (西浦)の湖水、C地点及びD地点は地区への流入水である。

結果を見ると、COD(②3)、SS(②4)、TN(②5)は、流出水(A 地点)において例年 11 月から 5 月にかけて高い値となる傾向がある。その理由として、冬季は収穫時の濁水の影響により、春季はレンコン作付け前の代掻き・基肥施肥や定植を通して発生する濁水の影響があったものと考えられる。TP(②6)は A 地点で例年 7 月に上昇していた。また、B 地点の水質については、A 地点からの流下の影響が大きいと考えられる。

流入水である C 地点 (境川からの取水地点)及び D 地点 (境川支流からの流入地点) においては、各年度とも年間を通して大きな変動は見られなかった。

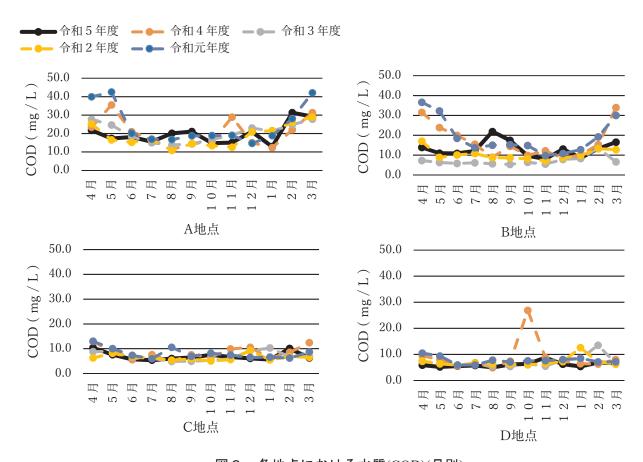
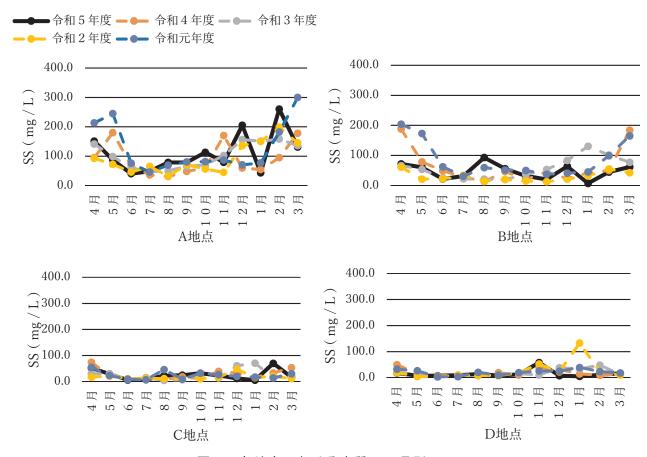
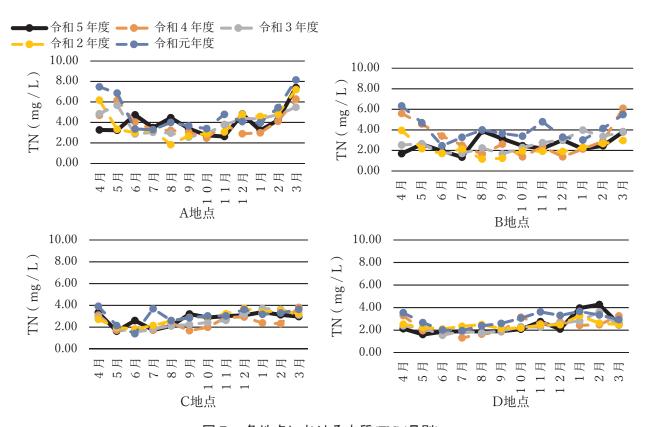




図3 各地点における水質(COD)(月別)

各地点における水質(SS)(月別) 図 4

各地点における水質(TN)(月別)

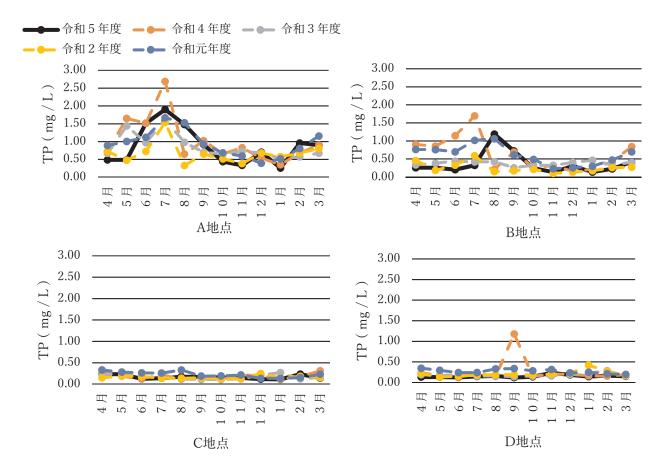
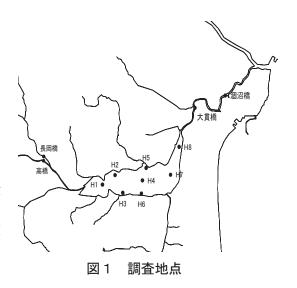


図6 各地点における水質(TP)(月別)

1-7 涸沼の水質保全に関する調査事業

1 目的

涸沼では、平成12年3月に第1期水質保全計画を策定し、水質目標を定めて総合的な水質保全対策を 実施してきた。種々の水質浄化対策を講じることによって水質は徐々に改善されてきたが、依然として 環境基準の達成には至っていない状況であり、令和3年3月に「涸沼水質保全の対応方針」が策定され、 引き続き、水質保全対策を実施している。本事業は、継続的な湖内水質調査及びプランクトン調査等に より、水質汚濁機構の解明や水質予測シミュレーションの精度の向上、さらには効果的な水質保全対策 検討のための基礎資料を得ることを目的としている。


2 調査方法

(1) 水質調査

・調査期間:令和5年4月から令和6年3月(月1回)

・調査地点:湖内8地点の上層 (水面下 0.5 m) 及び下層 (湖底上 0.5 m)、下流の涸沼川 (大貫橋、涸沼橋) の2地点の表層、上流の涸沼川 (高橋) 及び涸沼前川 (長岡橋) の表層 (図1のとおり)。

調査項目:透明度(透視度:河川)、水深、水温、pH、電気伝導率(EC)、溶存酸素量(DO)、浮遊物質量(SS)、化学的酸素要求量(COD)、溶存態COD(dCOD)、全有機炭素量(TOC)、溶存態TOC(DOC)、全窒素(TN)、溶存態TN(dTN)、各態窒素(NO₃-N、NO₂-N、NH₄-N)、全りん(TP)、溶存態TP(dTP)、りん酸態りん(PO₄-P)、クロロフィルa(Chl-a)、比色シリカ(Si)

(2) プランクトン調査

・調査期間:(1)と同じ

・調査地点:植物プランクトン、動物プランクトンともにH4は月1回、H1及びH7は隔月で実施

調査方法:植物プランクトンの細胞数及び生体積、動物プランクトンの個体数

3 結果の概要

(1) 水質

水質の測定結果は、原則として公共用水域水質測定結果の報告方法に準拠して丸め、表 1~12 に示した。

図2に湖内全地点平均 $(H1\sim H8)$ の COD の月別推移を示す。COD は、上下層ともに過去5年間の平均値と比較して、4月は低い値となり、5月から9月にかけて高い値となった。10 月から3月については過去の平均値と同程度で推移した。4月~3月の平均値は、上層で $6.4\,\mathrm{mg/L}$ 、下層で $5.9\,\mathrm{mg/L}$ であった。

次に、湖内全地点平均の TN の月別推移を図3に示す。過去5年間の平均値と比較して、上層では6月に高くなり、8月、12月、1月で低くなった。下層も概ね同様の結果となった。 $4\sim3$ 月の平均値は、上層で $1.5\,\mathrm{mg/L}$ 、下層で $1.4\,\mathrm{mg/L}$ であった。

TP の月別推移 (図4) については、上下層ともに4月、5月、7月、11月で過去5年間の平均値より高く、6月、9月で低かったが、そのほかの月は過去平均値と同程度で推移した。 $4\sim3$ 月の平均値は、上層が 0.10 mg/L、下層が 0.11 mg/L であった。

Chl-a(図5) は、過去平均値と比べて上下層ともに4月、3月は低く、それ以外の月は平均値と同程度で推移した。

 $C\Gamma(\mathbf{図6})$ は、上下層とも6月、3月には過去平均値より低くなったが、それ以外の月においては過去平均値より高い値で推移した。

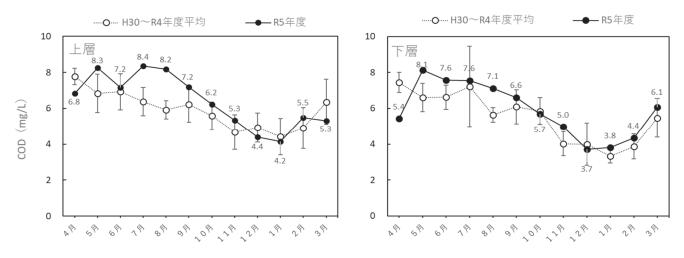


図2 CODの月別推移(上層、下層。エラーバーは標準偏差)

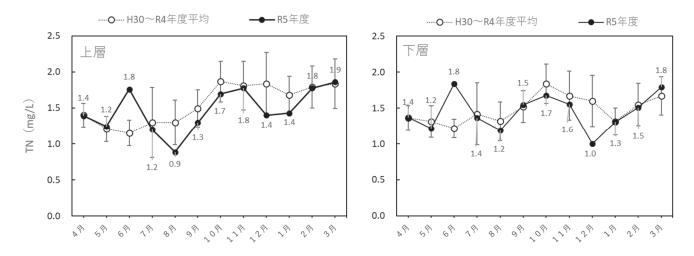


図3 TNの月別推移(上層、下層。エラーバーは標準偏差)

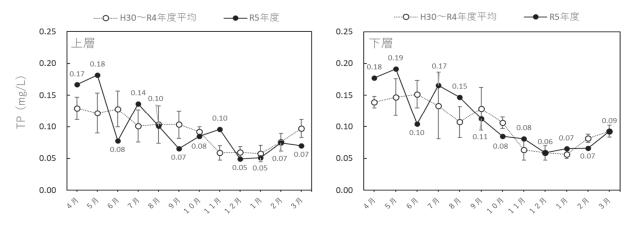


図4 TPの月別推移(上層、下層。エラーバーは標準偏差)

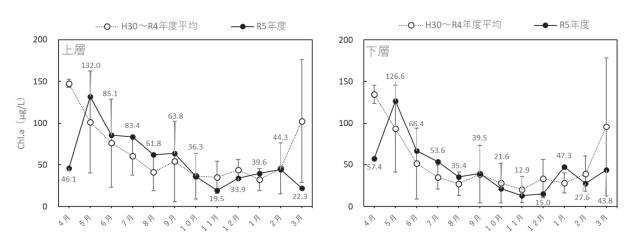


図5 Chl-aの月別推移(上層、下層。エラーバーは標準偏差)

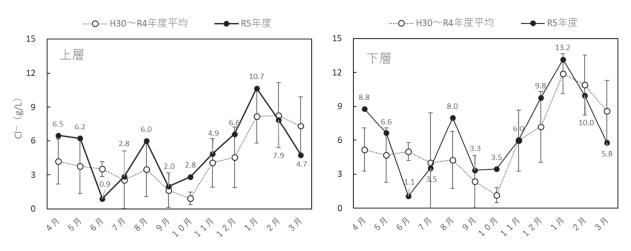


図6 Cl⁻の月別推移(上層、下層。エラーバーは標準偏差)

(2) プランクトン

図7に H4 における近年5年間の植物プランクトン細胞数の推移を示す。令和5年度は、5月から 6月に珪藻綱の細胞数が多く出現した。年間を通じても珪藻綱が優占種となることが多く、その中で も Thalassiosiraceae や、汽水種である Skeletonema costatum complex の優占が見られた。

図8に H4 における近年5年間の動物プランクトン個体数の推移を示す。令和5年度は、全体の個 体数としては8月が最も多くかった。出現傾向として、年間を通じて繊毛虫門の割合が多い月が多く、 特に4月、7月、10月において高い割合を示した。8月、9月は輪形動物門の割合が多くなった。

図7 H4 における近年5年間の植物プランクトン細胞数の推移

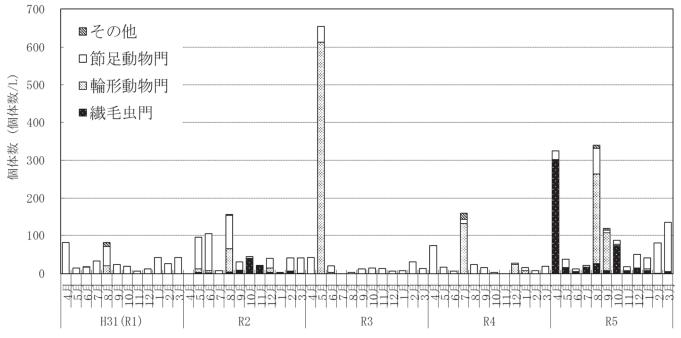


図8 H4における近年5年間の動物プランクトン個体数の推移

水質調査結果一覧(4月) 表1

	X
	Ţ
	庁デー
	気象厂
	冥
	害
	ī
	K
	ွ
	0
	20.9
	河道
	ΨX

晴れ

令和5年4月20日

		10	10	_	10			_	16		16	~	16	16			45
Si	(mg/L)	9.9	6.5	5.7	5.5	7.0	5.4	5.7	5.5	5.4	5.5	5.8	5.5	5.5	5.1	5.4	4.3
CI	(g/L)	5.4	6.7	6.5	7.9	6.1	9.1	6.5	10.7	6.8	7.9	9.9	9.6	6.8	8.1	7.0	10.3
EC	(mS/cm)	15.6	18.0	16.6	20.8	16.8	24.0	17.8	27.0	18.5	20.5	17.4	24.6	18.3	21.6	18.5	26.8
Chl.a	(ng/L)	47	39	52	20	50	58	48	98	38	74	42	64	46	63	46	25
PO ₄ -P	(mg/L)	0.076	0.049	0.057	0.036	0.037	0.115	0.014	0.078	0.043	0.037	0.013	0.127	0.016	0.027	0.012	0.040
dTP	(mg/L)	0.140	0.084	0.127	0.074	0.083	0.143	0.054	0.101	0.097	0.065	0.051	0.157	0.058	0.054	0.049	0.067
TP	(mg/L)	0.280	0.186	0.244	0.149	0.155	0.233	0.120	0.198	0.182	0.164	0.125	0.246	0.116	0.138	0.113	0.106
NO ₂ -N	(mg/L)	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.01
NO3-N	(mg/L)	0.53	0:30	0.35	0.27	0.51	0.14	0.37	0.12	0.34	0.23	0.42	0.15	0.35	0.27	0.35	0.31
N++N	(mg/L)	0.18	0.28	0.14	0.31	0.17	89.0	90.0	69.0	0.14	0.35	0.12	69.0	90.0	0.27	90.0	0.21
NTb	(mg/L)	1.29	1.11	1.14	1.08	1.21	1.25	06.0	1.10	1.00	1.07	1.00	1.24	0.91	0.97	0.82	0.94
ZI	(mg/L)	1.98	1.41	1.58	1.38	1.53	1.52	1.16	1.46	1.39	1.40	1.21	1.49	1.18	1.25	1.10	1.08
DOC	(mg/L)	3.7	3.2	3.9	3.2	3.4	2.8	3.2	2.6	3.6	2.8	3.3	2.7	3.3	2.9	3.2	2.6
TOC	(mg/L)	5.5	4.2	5.7	4.1	4.8	3.8	4.5	3.7	4.6	4.0	4.3	3.6	4.3	3.6	4.2	3.1
dcop	(mg/L)	5.1	5.2	5.6	4.8	4.3	3.8	4.8	4.2	5.9	5.0	5.0	4.4	5.2	4.9	4.8	4.0
СОД	(mg/L)	9.1	6.2	6.7	5.8	7.6	5.4	6.1	5.7	8.9	5.7	5.7	4.9	6.2	5.5	6.4	4.3
SS	(mg/L)	20	23	16	14	15	15	11	21	14	27	11	15	13	14	11	10
DO	(mg/L)	7.3	4.7	7.7	4.6	7.0	1.7	8.6	1.6	7.4	4.6	7.6	1.8	8.6	4.8	8.7	5.5
Hd	(-)	8.6	8.5	8.6	8.5	8.6	8.4	8.7	8.3	8.6	8.5	8.5	8.3	8.7	8.5	8.7	8.5
光	(೧)	20.0	20.0	20.0	19.0	20.0	18.5	19.0	19.0	20.0	19.0	19.5	18.5	20.0	19.5	20.0	18.0
光	(m)	2.1		2.3		2.5		2.8		2.1		2.6		2.4		2.3	
透明度	(m)	0.40		0.40		0.50		0.40		0.50		0.50		0.50		09:0	
拉卡耳约	* 27.47.23	9:30		9:25		9:50		10:10		11:00		10:00		10:30		10:50	
***		幽山	連	皿山	冲	幽山	严	幽山	严	圖	塵	墨	严	幽山	庫	塵	塵
		H	- H	03	2	ω.	ω	4	4	r2	73	9	9	7	7	00	∞
		涠沼	涠沼	渾沼	涠沼	涸沼	涠沼	涠沼	涠沼	涠沼	涠沼	涸沼	涠沼	涠沼	涸沼	涠沼	涠沼

Si	$({\rm mgL^{\text{-}1}})$	4.3	5.1	9.7	13.3
CI	$(g L^{-1})$	10.4	7.7	<0.1	<0.1
EC	$ \begin{array}{c} L^{-1} \\ (mg \ L^{-1})$	27.3	20.3	0.3	0.2
Chl.a	$(\mu g \; L^{\text{-}1})$	39	49	4	4
DTP PO ₄ -P Chl.a	$({\rm mg~L^{-1}})$	0.024	0.018	0.133	0.049
DTP	$({\rm mgL^{\text{-}1}})$	0.040	0.054	0.140	0.057
TP	$({\rm mg}\ L^{\text{-}1})$	0.103	0.136	0.171	0.05 0.097
DTN NH ₄ -N NO ₃ -N NO ₂ -N TP	$({\rm mg~L}^{\text{-1}})$	0.01	0.02	0.03	0.05
NO ₃ -N	$({\rm mg}{\rm L}^{\text{-}1})$	0.31	0.33	1.42	0.12 1.87
NH ₄ -N	$({\rm mg}\ L^{\text{-}1})$	0.16	0.12	0.18	
DTN	$({\rm mgL}^{-1})$	0.84	68.0	1.71	2.06
NI	$({\rm mg~L}^{-1})$; 1.05 (1.21	1.75	2.2 2.08
	$({\rm mg}L^{\text{-}1})$	2.6	3.2	2.0	2.2
d-cod Toc Doc	$({\rm mg}\ L^{\text{-}1})$	3.2	3.9	2.2	2.4
д-сор	$({\rm mg}\ L^{\text{-}1})$	3.9	5.4	3.8	3.9
СОО	$({\rm mg}L^{\text{-}1})$	4.8	6.0	4.1	4.6
SS	$({\rm mg}\ L^{\text{-}1})$	14	16	7	6
DO	$({\rm mg~L}^{\text{-1}})$	7.1	7.8	8.5	8.9
Hd	(-)	8.4	8.6	8.1	8.1
光	(C)	18.5	19.0	21.0	22.5
米	(m)		-		
透視度	(cm)	33	29	>50	>50
林水群然	7	11:50	11:40	13:25	13:40
		涸沼橋	大貫橋	順極	長岡橋

水質調査結果一覧 (5月) 条2

気温 25.2 ℃ (水戸10時, 気象庁データ)

歌り

天気

令和5年5月19日

Si	(mg/L)	4.4	4.3	4.1	4.5	4.0	5.0	3.9	4.9	4.1	4.1	4.0	4.5	3.9	3.8	3.8	3.7
CI	(g/L)	0.9	6.0	6.3	9.9	5.9	6.9	6.2	7.1	6.3	6.2	5.8	6.7	8.9	6.7	6.4	6.9
EC	(mS/cm)	15.1	16.3	16.6	17.9	15.5	18.0	16.6	18.6	17.1	16.9	15.8	17.3	17.1	18.3	17.4	18.4
Chl.a	(J/gn)	171	168	123	127	143	110	103	118	152	156	121	102	118	111	125	121
PO ₄ -P	(mg/L)	0.009	900.0	0.005	0.003	0.004	0.003	0.002	0.003	0.004	0.005	0.002	0.003	0.002	0.003	0.002	0.003
dTP	(mg/L)	0.053	0.039	0.053	0.030	0.044	0.027	0.046	0.020	0.051	0.052	0.048	0.026	0.049	0.046	0.042	0.040
TP	(mg/L)	0.207	0.217	0.196	0.177	0.182	0.183	0.165	0.265	0.210	0.212	0.170	0.197	0.156	0.139	0.168	0.144
NO ₂ -N	(mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
NO ₃ -N	(mg/L)	<0.01	<0.01	<0.01	10.0	<0.01	10.0	<0.01	0.04	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
NH₄-N	(mg/L)	0.12	0.16	0.08	0.15	0.09	0.23	0.05	0.19	0.07	0.07	0.08	0.14	0.04	0.04	0.04	0.05
NTb	(mg/L)	89.0	19:0	99.0	0.56	0.57	0.59	0.52	0.54	09.0	0.62	0.59	0.51	0.56	0.52	0.55	0.53
NI	(mg/L)	1.38	1.44	1.49	1.16	1.26	1.18	1.18	1.32	1.33	1.39	1.13	1.09	1.09	1.05	1.08	1.09
DOC	(mg/L)	4.0	3.8	4.2	3.3	3.7	3.1	3.6	3.0	3.8	3.8	3.7	3.2	3.7	3.6	3.7	3.6
TOC	(mg/L)	6.7	6.7	7.7	6.2	6.9	5.4	6.9	6.4	7.7	7.2	6.7	5.4	8.9	6.7	6.9	9.9
доор	(mg/L)	5.4	5.2	0.9	5.0	5.2	4.1	5.3	4.1	5.8	6.1	5.4	4.8	5.6	5.4	5.7	5.6
СОО	(mg/L)	9.5	8.6	7.9	7.3	7.6	7.1	7.7	8.0	9.4	8.9	8.1	8.6	7.9	7.9	8.0	7.4
SS	(mg/L)	21	30	20	26	17	18	17	99	28	29	18	39	18	17	20	18
DO	(mg/L)	9.6	6.9	9.6	3.7	10.2	3.0	10.3	2.8	9.0	8.7	6.6	5.2	10.2	8.6	10.4	7.6
Hd	·)	8.9	8.7	8.3	8.4	8.9	8.6	9.0	8.6	8.9	8.	8.8	8.6	8.9	9.0	9.0	9.0
光	(C)	23.5	23.0	22.5	22.0	23.5	22.0	23.5	22.0	23.5	23.0	23.5	22.5	23.5	23.0	23.5	23.5
米	(m)	2.1		2.4		2.5		3.1		2.1		2.8		2.5		2.4	
透明度	(m)	0.40		0.40		0.40		0.40		0.30		0.50		0.40		0.40	
拉卡田拉	14 小叶沟	8:50		8:40		9:10		9:30		10:30		9:15		10:00		10:15	
		涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

			_	_	40
Si	$({\rm mgL^{\text{-}1}})$	3.7	3.7	9.7	10.3
CI	$(gL^{\text{-}1})$	7.2	6.8	<0.1	<0.1
EC	(mS cm ⁻¹)	79 19.2	18.2	0.3	0.2
Chl.a	$(\mu g \ L^{\text{-}1})$	79	86	ю	2
DTP PO ₄ -P Chl.a	$\left(\operatorname{mg} L^{-1}\right)\left(\operatorname{mg} L^{-$	0.002	0.003	0.142	0.036
DTP	$({\rm mg}L^{\text{-}1})$	<0.01 0.122 0.030	<0.01 0.149 0.038	0.205 0.151	0.048
TP	$({\rm mg}\ {\rm L}^{\text{-1}})$	0.122	0.149	0.205	0.095
NO ₂ -N	$(mg L^{-1})$	<0.01	<0.01	0.03	1.14 0.02 0.095 0.048
DTN NH4-N NO ₃ -N NO ₂ -N TP	(mg L ⁻¹)	0.03	<0.01	1.34	1.14
NH₄-N	$(mg L^{-1})$	0.05	0.05	0.12	1.52 1.45 0.06
DTN	$({\rm mg~L}^{-1})$	0.44 0.05	0.45	1.65	1.45
NT	$({\rm mg~L}^{-1})$	0.87	1.05	1.73	1.52
DOC	$({\rm mg~L}^{-1})$	3.2	3.4	2.8	2.9
TOC	$({\rm mg~L}^{-1})$	5.3	5.6	2.9	3.1
сор д-сор	$({\rm mg~L}^{-1})$	4.8	5.0	4.6	4.7
СОО	$({ m mg~L}^{-1})$	6.5	8.1	5.1	5.5
SS	$({ m mg~L}^{-1})$	22	23	6	∞
DO	$({\rm mg~L}^{\text{-1}})$	9.5	9.6	7.5	8.7
Hd	(-)	8.7	8.8	8.4	8.1
当	(೧)	23.2	23.5	23.1	22.0
光	(m)	,			,
透視度	(cm)	18	16	51	51
拉水陆沟	7	11:50	11:30	12:20	12:35
		涸沼橋	大輔橋	順	長岡橋

表3 水質調査結果一覧(6月)

なる 小見馬目帽米 見、 気温 22.6°C (水戸10時, 気象庁データ)

歌り

天気

令和5年6月15日

海沼 酒沼 涠沼

選出 選出 選出 選出 選出

	$\overline{}$	<u></u>		L									<u></u>				L
CI	(g/L)	0.3	0.3	0.5	8.0	0.7	8.0	1.0	1.2	1.1	1.3	1.0	6.0	1.2	1.6	1.4	1.6
EC	(mS/cm)	0.3	0.2	1.2	1.8	1.1	1.5	2.1	2.9	2.8	2.9	2.0	2.1	2.8	3.8	3.3	4.1
Chl.a	(mg/L)	63	15	89	62	105	74	72	76	92	78	100	100	94	99	87	09
PO ₄ -P	(mg/L)	900.0	0.026	0.004	0.003	0.004	0.004	0.003	0.003	0.002	0.003	0.003	0.003	0.002	0.003	0.002	0.003
dTp	(mg/L)	0.022	0.035	0.019	0.020	0.024	0.021	0.020	0.020	0.021	0.023	0.021	0.022	0.022	0.023	0.022	0.022
TP	(mg/L)	0.071	0.082	0.067	0.105	0.082	0.103	0.078	0.137	860.0	0.092	0.081	0.094	0.075	0.108	0.071	0.114
NO ₂ -N	(mg/L)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03
NO ₃ -N	(mg/L)	1.39	1.51	1.24	1.14	1.22	1.20	1.10	1.08	0.97	0.97	0.98	86.0	0.93	0.88	0.91	98.0
NH₄-N	(mg/L)	0.02	0.07	0.01	90.0	0.02	0.03	0.02	0.07	0.03	0.07	0.02	0.02	0.02	0.15	0.02	0.20
NTp	(mg/L)	1.63	1.75	1.52	1.47	1.53	1.55	1.39	1.49	1.39	1.42	1.37	1.40	1.27	1.44	1.29	1.42
NI	(mg/L)	1.85	1.92	1.81	1.84	1.82	1.92	1.69	1.91	1.78	1.76	1.74	1.76	1.72	1.75	1.69	1.82
DOC	(mg/L)	2.7	2.6	3.1	3.0	3.0	2.9	3.0	2.9	3.0	3.0	3.0	3.0	3.0	2.9	3.0	3.0
TOC	(mg/L)	3.9	2.9	4.3	4.7	4.6	4.3	4.8	3.9	4.5	3.9	5.0	5.2	4.6	3.6	4.7	3.7
dcod	(mg/L)	4.3	4.1	4.7	4.7	4.9	4.8	4.8	4.9	5.1	5.3	4.8	5.0	4.6	4.8	4.9	4.6
СОО	(mg/L)	0.9	5.4	6.5	7.5	7.5	7.9	7.4	8.9	7.5	7.6	7.6	8.3	7.1	7.1	7.8	8.0
SS	(mg/L)	10	5	10	27	12	30	11	44	22	21	19	26	16	28	18	34
DO	(mg/L)	10.9	8.2	10.4	8.2	11.7	10.0	10.7	8.3	9.1	8.3	11.6	11.3	11.0	7.5	11.3	6.5
Hd	(-)	8.6	8.2	8.4	8.2	7.9	8.2	9.0	8.8	8.4	8.4	8.7	6.8	8.9	8.6	8.7	8.4
当	(C)	23.5	23.0	24.5	24.0	24.0	24.0	24.5	24.0	25.0	24.0	24.0	24.0	25.0	24.5	24.5	24.0
茶	(m)	2.1		2.5		2.6		3.1		2.3		2.7		2.5		2.6	
透明度	(m)	0.70		09:0		09.0		0.50		0.50		0.50		09:0		0.50	
拉卡耳约	14-27-14-33	10:15		10:00		10:35		11:00		11:50		10:45		11:25		11:40	
		1 上層	1	2 上層	2 上	3 上屬	B 上 B	4 上層	4 下層	5 上層	5 圖	9 上層	壓上 9	7 上層	7 下層	<u>₩</u>	<u>⊯</u> ⊬ ∞

5.8

5.3

5.3

5.3

6.5 6.2 5.7

6.1

 $S_{\mathbf{i}}$

5.2

]]净 牡 个]]	透視度	光	英	Hd	DO	SS	СОО	доо-р	TOC	d-COD TOC DOC TN DTN NH ₄ -N NO ₃ -N NO ₂ -N TP	NI	DTN	NH4-N	NO ₃ -N	NO ₂ -N		DTP	DTP PO ₄ -P Chl.a EC	Chl.a	EC	CI	Si
	3本 4744 次5	(cm)	(m)	(C)	(-)	$(mg L^{-1})$	$(mg L^{-1})$	(mg L^{-1})	(mg L^{-1})	(mg L ⁻¹)	$\left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \right \left(\operatorname{mg} \operatorname{L}^{-1} \right) \left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \right \left(\operatorname{mg} \operatorname{L}^{-1} \right) \left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \right $	$\left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \right $	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	mg L ⁻¹) ($\left \left(\operatorname{mg} L^{-1} \right) \right $	mg L ⁻¹)	(mg L ⁻¹)	(µg L ⁻¹)	$) \left(\left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{ig} L^{-1} \right) \left(\operatorname{mS} \operatorname{cm}^{-1} \right) \left(\operatorname{g} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \right)$	(g L ⁻¹)	$({ m mg~L}^{-1})$
涸沼橋	12:50	32		24.0	8.0	7.0	12	6.5	4.8	3.4	3.0	1.71	1.46	0.15	0.95	0.03	0.089	0.030	0.013	37	3.9	1.5	5.6
大貫橋	12:35	21	,	24.0	8.1	8.4	19	7.1	4.8	3.5	2.9	1.74	1.38	80.0	0.92	0.03	680.0	0.022	0.003	64	3.7	1.4	5.3
卓	14:10	>50		21.5	7.7	8.3	7	3.9	3.8	2.1	2.1	1.70	1.62	90.0	1.40	0.01	0.062	0.036	0.030	3	0.1	<0.1	8.6
長岡橋	14:25	>50		22.0	7.6	8.5	00	4.8	3.9	2.6	2.4	2.05	1.96	60.0	1.70	0.02	0.066 0.035	0.035	0.027	3	0.1	<0.1	8.7

8.6 8.2 8.2

表 4 水質調査結果一覧(7月)

28.6°C (水戸10時, 気象庁データ)

乗り

天気

令和5年7月13日

TOC DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 6.1 3.6 1.50 0.99 0.60 0.11 <0.01 6.0 3.4 1.50 0.99 0.63 0.14 <0.01 6.0 3.4 1.35 0.61 0.03 0.17 <0.01 6.4 3.6 1.16 0.44 0.03 <0.17 <0.01 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 5.9 3.5 1.12 0.46 0.02 <0.01 <0.01 6.4 3.5 1.20 0.46 0.02 <0.01 <0.01 6.4 3.5 1.35 0.25 0.03 <td< th=""><th>TOC DOC TN dTN NH₄-N NO₃-N NO₂-N TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 4.2 2.9 1.50 0.99 0.60 0.11 <0.01 0.131 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 6.0 3.4 1.35 0.61 0.03 0.17 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 0.01 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 6.4 3.6 1.12 0.44 0.03 <0.01 <0.01 0.149 6.4 3.5 1.20</th><th>TOC DOC TN dTN NH₄-N NO₃-N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 6.0 3.4 1.35 0.61 0.03 0.14 <0.01 0.148 0.041 6.0 3.4 1.35 0.61 0.03 <0.01 <0.01 0.10 0.148 0.042 6.4 3.6 1.53 1.19 0.79 0.10 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.3 1.20 0.44 0.03</th><th>TOC DOC TN dTN NH₄-N NO₃-N NO₂-N TP dTP PO₄-P (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 0.00 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.133 0.039 0.00 6.0 3.4 1.50 0.59 0.60 0.11 <0.01 0.17 0.039 0.00 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 0.00 6.0 3.4 1.35 0.61 0.03 0.17 <0.01 0.148 0.042 0.00 6.4 3.6 1.16 0.79 0.10 <0.01 0.148 0.042 0.00 6.4 3.6 1.16 0.03 0.17 <0.01 0.15</th><th>TOC DOC TN dTN NH₄-N NO₃-N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 6.0 3.4 1.35 0.61 0.03 0.14 <0.01 0.148 0.041 6.0 3.4 1.35 0.61 0.03 <0.01 <0.01 0.10 0.148 0.042 6.4 3.6 1.53 1.19 0.79 0.10 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.3 1.20 0.44 0.03</th></td<>	TOC DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 4.2 2.9 1.50 0.99 0.60 0.11 <0.01 0.131 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 6.0 3.4 1.35 0.61 0.03 0.17 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 0.01 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 6.4 3.6 1.12 0.44 0.03 <0.01 <0.01 0.149 6.4 3.5 1.20	TOC DOC TN dTN NH ₄ -N NO ₃ -N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 6.0 3.4 1.35 0.61 0.03 0.14 <0.01 0.148 0.041 6.0 3.4 1.35 0.61 0.03 <0.01 <0.01 0.10 0.148 0.042 6.4 3.6 1.53 1.19 0.79 0.10 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.3 1.20 0.44 0.03	TOC DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 0.00 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.133 0.039 0.00 6.0 3.4 1.50 0.59 0.60 0.11 <0.01 0.17 0.039 0.00 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 0.00 6.0 3.4 1.35 0.61 0.03 0.17 <0.01 0.148 0.042 0.00 6.4 3.6 1.16 0.79 0.10 <0.01 0.148 0.042 0.00 6.4 3.6 1.16 0.03 0.17 <0.01 0.15	TOC DOC TN dTN NH ₄ -N NO ₃ -N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 6.1 3.6 1.24 0.58 0.03 0.14 <0.01 0.142 0.041 6.0 3.4 1.35 0.61 0.03 0.14 <0.01 0.148 0.041 6.0 3.4 1.35 0.61 0.03 <0.01 <0.01 0.10 0.148 0.042 6.4 3.6 1.53 1.19 0.79 0.10 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.4 3.6 1.16 0.44 0.03 <0.01 <0.01 0.148 0.042 6.3 1.20 0.44 0.03
TOC DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N 4.9 3.3 1.29 0.97 0.11 0.46 0.01 4.2 2.9 1.50 0.99 0.60 0.11 0.01 6.1 3.6 1.24 0.58 0.03 0.14 <0.01	dCOD TOC DOC TN dTN NH ₄ -N NO ₅ -N NO ₂ -N TP 6mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 5.4 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 4.4 4.2 2.9 1.50 0.99 0.60 0.11 <0.01	dCOD TOC TN dTN NH ₄ -N NO ₃ -N TP TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 5.4 4.9 3.3 1.29 0.99 0.60 0.11 0.01 0.13 0.039 4.4 4.2 2.9 1.50 0.99 0.60 0.11 0.01 0.13 0.039 5.5 6.1 3.6 1.24 0.58 0.03 0.14 <0.01	dCOD TOC TN dTN NH ₄ -N NO ₂ -N TP dTP PO ₄ -P (mgL) (mg/L) (mg/L	dCOD TOC DOC TN dTN NH ₄ -N NO ₃ -N TP dTP PO ₄ -P CINI.a 6.00 TOC TOC TN dTN NH ₄ -N NO ₃ -N TP dTP PO ₄ -P CINI.a 5.4 4.9 3.3 1.29 0.97 0.11 0.46 0.01 0.133 0.039 0.60 5.5 6.1 3.6 1.29 0.99 0.60 0.11 <0.01
DOC TN dTN NH ₄ -N NO ₅ -N NO ₂ -N 3.3 1.29 0.97 0.11 0.46 0.01 2.9 1.50 0.99 0.60 0.11 <0.01	DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 2.9 1.29 0.97 0.11 0.46 0.01 0.133 2.9 1.50 0.99 0.60 0.11 <0.01	DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP dTP (mg/L) (m	DOC TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP dTP PO ₄ -P 3.3 1.29 (mg/L)	DOC TN dTN NH ₄ -N NO ₃ -N TP dTP PO ₄ -P Chl.a 3.3 (mg/L) (mg/L)
TN dTN NH ₄ -N NO ₃ -N NO ₂ -N (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 1.29 0.97 0.11 0.46 0.01 1.50 0.99 0.60 0.11 <0.01	TN dTN NH ₄ -N NO ₂ -N NO ₂ -N TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 1.29 0.97 0.11 0.46 0.01 0.133 1.50 0.99 0.60 0.11 <0.01	TN dTN NH ₄ -N NO ₅ -N NO ₂ -N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 1.29 0.97 0.11 0.46 0.01 0.133 0.039 1.50 0.99 0.60 0.11 <0.01	TN dTN NH ₄ -N NO ₃ -N NO ₂ -N TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 1.29 0.97 0.11 0.46 0.01 0.133 0.039 0.009 1.50 0.99 0.60 0.11 <0.01	TN dTN NH ₄ -N NO ₅ -N NO ₂ -N TP dTP PO ₄ -P Chl.a (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 1.29 0.97 0.11 0.46 0.01 0.013 0.039 0.009 64 1.50 0.99 0.60 0.11 <0.01
NH4-N NO ₃ -N NO ₂ -N (mg/L) (mg/L) (mg/L) 0.11 0.46 0.01 0.60 0.11 <0.01	NH4-N NO3-N NO2-N TP (mg/L) (mg/L) (mg/L) (mg/L) 0.11 0.46 0.01 0.133 0.60 0.11 <0.01	NH4-N NO3-N NO2-N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.11 0.46 0.01 0.133 0.039 0.60 0.11 <0.01	NH ₄ -N NO ₃ -N NO ₂ -N TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.11 0.04 0.01 0.133 0.039 0.009 0.60 0.11 <0.01	NH4-N NO ₃ -N NO ₂ -N TP dTP PO ₄ -P Chl.a (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.11 0.46 0.01 0.133 0.039 0.009 64 0.60 0.11 <0.01
NO ₃ -N NO ₂ -N (mg/L) (mg/L) (0.01 0.46 0.01 0.11 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011	NO ₃ -N NO ₂ -N TP (mg/L) (mg/L) (mg/L) 0.46 0.01 0.133 0.14 <0.01 0.142 0.08 <0.01 0.148 0.17 <0.01 <0.08 <0.01 0.148 0.17 <0.01 0.148 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.01 <0.00 <0.01 <0.00 <0.01 <0.00 <0.01 <0.00 <0.01 <0.00 <0.00 <0.01 <0.00 <0.00 <0.01 <0.00 <0.00 <0.01 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.	NO ₃ -N NO ₂ -N TP dTP (mg/L) (mg/L) (mg/L) (mg/L) 0.46 0.01 0.133 0.039 0.11 <0.01	NO ₃ -N TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.46 0.01 0.133 0.039 0.009 0.11 <0.01	NO ₃ -N TP dTP PO ₄ -P Chl.a (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.46 0.01 0.133 0.039 0.009 64 0.11 <0.01
NO ₂ -N N- ₂ ON N- ₁ O 0.01	NO ₂ -N TP (mg/L) (mg/L) (mg/L) (0.01 0.133 (0.01 0.142 (0.01 0.148 (0.01 0.148 (0.01 0.148 (0.01 0.138 (0.01 0.138 (0.01 0.138 (0.01 0.134 (0	NO ₂ -N TP dTP (mg/L) NO ₂ -N TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) (mg/L) 0.01 0.133 0.039 0.009 <0.01	NO ₂ -N TP dTP PO ₄ -P Chl.a (mg/L) (mg/L) (mg/L) (ug/L) 0.01 0.133 0.039 0.009 64 <0.01	
	(mg/L) 0.133 0.171 0.142 0.148 0.148 0.156 0.138 0.138 0.138 0.149 0.147 0.234 0.124 0.113	(mg/L) (mg/L) 0.133 0.039 0.171 0.037 0.142 0.041 0.148 0.042 0.156 0.044 0.132 0.042 0.138 0.042 0.138 0.042 0.138 0.042 0.139 0.041 0.147 0.048 0.234 0.064 0.124 0.064 0.124 0.060	TP dTP PO ₄ -P (mg/L) (mg/L) (mg/L) 0.133 0.039 0.009 0.171 0.037 0.009 0.142 0.041 0.008 0.160 0.041 0.006 0.156 0.042 0.007 0.132 0.042 0.008 0.132 0.042 0.008 0.138 0.042 0.008 0.139 0.042 0.007 0.149 0.041 0.007 0.147 0.048 0.009 0.124 0.040 0.006 0.124 0.040 0.006 0.113 0.037 0.006 0.129 0.039 0.006 0.129 0.039 0.006	TP dTP PO ₄ -P Chl.a (mg/L) (mg/L) (µg/L) (µg/L) 0.133 0.039 0.009 64 0.171 0.041 0.008 85 0.142 0.041 0.008 85 0.160 0.041 0.006 82 0.156 0.044 0.007 92 0.132 0.042 0.008 88 0.132 0.042 0.008 88 0.138 0.042 0.008 88 0.138 0.041 0.007 82 0.149 0.041 0.007 84 0.149 0.041 0.009 109 0.124 0.048 0.009 109 0.124 0.040 0.006 78 0.113 0.039 0.006 77 0.129 0.039 0.006 69
		dTP (mg/L) 0.039 0.037 0.041 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.043 0.053	dTP PO ₄ -P (mg/L) (mg/L) (0.039 0.009 0.041 0.042 0.004 0.042 0.007 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.044 0.042 0.044 0.044 0.005 0.044 0.040 0.044 0.046 0.0	dTP PO ₄ -P Chl.a (mg/L) (mg/L) (ug/L) 0.039 0.009 64 0.037 0.009 45 0.041 0.008 85 0.042 0.007 92 0.044 0.022 30 0.042 0.008 88 0.042 0.007 82 0.042 0.007 82 0.041 0.007 84 0.048 0.009 109 0.048 0.006 78 0.049 0.006 77 0.037 0.006 69 0.039 0.006 69

8.0 8.5 9.8

8.2

8.4 8.6 8.6 8.1 8.1 8.2

7.7

8.1

Si	$({\rm mg}{\rm L}^{\text{-}1})$	7.6	7.6	10.7	11.1
CI	$(g L^{-1})$	3.6	3.2	<0.1	<0.1
EC	$ mgL^{-1}\rangle \left(mgL^{-1}\rangle \right) \right) \right)\right)\right)\right)\right)\right)\right)\right $	8.8	9.8	0.2	0.2
DTN NH ₄ -N NO ₃ -N NO ₂ -N TP DTP PO ₄ -P Chl.a EC	$(\mu g \; L^{\text{-}1})$	55	54	4	3
PO ₄ -P	$({\rm mg}\ L^{\text{-}1})$	0.007	800.0	0.082	0.035
DTP	$({\rm mg}L^{\text{-}1})$	0.040	0.038	0.087	0.041
TP	$({\rm mg}\ L^{\text{-}1})$	<0.01 0.127	<0.01 0.134	0.110	0.059
NO ₂ -N	$({\rm mg}\; L^{\text{-}1})$	<0.01	<0.01	1.18 0.01 0.110 0.087	0.03
NO ₃ -N	$({\rm mg}\ L^{\text{-1}})$	0.14	60.0		0.13 1.52
N+⁴N	$({\rm mg}\ L^{\text{-}1})$	0.03	0.09	0.04	
DTN	$({\rm mgL^{\text{-}1}})$	0.63	0.64	1.22 (1.73 1.70
ZI	$({\rm mg}\; L^{\text{-}1})$	1.14	1.16	0.97	1.73
DOC	$({\rm mg}\ L^{\text{-}1})$	3.0	3.1	2.3	2.3
TOC	$({\rm mg}\ L^{\text{-}1})$	4.1	4.2	2.4	2.5
COD d-COD TOC DOC	$({\rm mg}\ L^{\text{-}1})$	4.9	5.1	3.5	3.5
COD	$({\rm mg}\ L^{\text{-}1})$	7.4	7.7	4.1	4.3
SS	$({\rm mg}\ L^{\text{-1}})$	14	19	3	3
DO	$({\rm mg~L^{-1}})$	7.1	6.7	7.8	8.1
Hd	·-)	8.6	8.3	7.9	7.8
米温	(ధ)	29.9	30.0	27.5	26.5
米派	(m)		1		
透視度	(cm)	22	61	>50	>50
探水時刻	,	13:10	12:56	14:46	15:00
		涸沼橋	大貫橋	極極	長岡橋

水質調査結果一覧(8月) 表 5

気温 32.0°C (水戸10時, 気象庁データ)

晴れ

天気

令和5年8月17日

E	(mS		
Chl.a	(ng/L)	82	
PO ₄ -P	(mg/L)	0.010	
dTP	(mg/L)	0.044	
TP	(mg/L) (0.132	
NH ₄ -N NO ₃ -N NO ₂ -N	(mg/L) (mg/L)	<0.01	
NO ₃ -N	(mg/L)	0.25	
N+⁴N	(mg/L)	0.07	
NIP	(mg/L)	0.76	
NI	(mg/L)	1.18	
DOC	(mg/L)	4.1	
TOC	(mg/L)	5.6	
QCOD	(mg/L)	5.9	
COD	(mg/L)	8.4	
SS	(mg/L)	15	
DO	(mg/L)	6.6	
Hd	·-)	8.8	
光	(D)	32.0	
光深	(m)	2.2	
透明度	(m)	0.50	
拉 水 時 刻	EX BASE AS	9:20	
		tutn	

Si	(mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CI	(g/L)	5.3	7.4	5.7	8.0	6.3	8.0	6.5	9.2	5.1	7.0	7.7	8.3	6.2	7.9	5.0	8.2
EC	(mS/cm)	12.9	19.7	14.2	21.3	16.5	21.1	16.5	24.5	13.5	1.61	17.4	22.8	15.4	21.5	13.5	21.6
Chl.a	(mg/L)	82	34	39	33	57	44	51	20	69	37	78	37	64	41	54	37
PO ₄ -P	(mg/L)	0.010	0.028	0.002	0.024	0.003	0.018	0.003	0.014	0.003	0.019	0.004	0.020	0.004	0.017	0.007	0.011
dTP	(mg/L)	0.044	0.059	0.036	0.057	0.039	0.050	0.040	0.044	0.038	0.050	0.042	0.049	0.037	0.048	0.042	0.041
TP	(mg/L)	0.132	0.143	0.093	0.123	0.100	0.149	0.100	0.132	960.0	0.158	0.103	0.260	0.091	0.111	0.095	0.101
NO ₂ -N	(mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01
NO ₃ -N	(mg/L)	0.25	0.07	0.01	0.05	0.03	0.05	<0.01	0.04	<0.01	0.05	0.03	0.04	60.0	90.0	0.20	90.0
N-⁺HN	(mg/L)	0.07	0.28	0.03	0.47	0.04	0.37	0.03	0.76	90.0	0.33	0.05	0.78	0.04	0.27	0.08	0.25
NTb	(mg/L)	92.0	98.0	0.51	0.97	0.55	16:0	0.54	1.18	0.52	98.0	0.56	1.21	0.59	0.83	0.75	0.79
N.I.	(mg/L)	1.18	1.08	0.88	1.20	0.84	1.13	0.73	1.46	0.81	1.24	0.88	1.46	0.84	1.02	0.91	0.93
DOC	(mg/L)	4.1	3.9	4.3	3.9	4.1	3.8	4.2	3.4	4.1	3.8	4.0	3.6	4.0	3.7	3.9	3.7
TOC	(mg/L)	5.6	5.0	6.0	4.7	5.6	4.9	5.5	3.9	5.7	5.3	5.5	4.5	5.1	4.4	4.9	4.6
dcod	(mg/L)	5.9	5.7	6.5	5.6	6.0	5.8	5.9	4.6	6.3	6.1	5.9	5.4	6.0	5.5	5.8	5.5
СОД	(mg/L)	8.4	6.8	9.0	6.8	7.5	9.9	8.3	6.9	9.4	8.8	7.4	6.9	7.5	6.9	8.0	7.3
SS	(mg/L)	15	19	14	12	11	18	11	12	18	39	12	91	10	10	8	15
DO	(mg/L)	6.6	4.9	11.9	4.2	11.2	4.5	13.2	1.5	13.5	4.1	11.4	2.4	10.0	5.3	9.6	5.2
Hd	(-)	8.8	8.6	8.9	8.5	9.0	8.8	9.2	8.6	9.1	8.7	9.0	8.5	8.9	8.6	8.7	8.5
光	(C)	32.0	32.0	32.0	32.0	32.0	32.0	32.5	31.5	32.5	32.0	32.0	31.5	32.5	31.5	32.0	31.5
米	(m)	2.2		2.6		2.7		3.1		2.5		2.9		2.6		2.7	
透明度	(m)	0.50		09.0		09.0		09.0		0.50		0.50		0.70		0.70	
拉水陆剂	3不 21~4寸 次5	9:20		9:10		9:40		10:00		11:15		9:50		10:30		10:50	
		涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

	拉水珠丝	透視度	关	子	Hd	DO	SS	СОО	доэ-р	TOC	DOC	Z	DTN	NH₄-N	d-COD TOC DOC TN DTN NH ₄ -N NO ₃ -N NO ₂ -N TP DTP PO ₄ -P Chl.a EC	NO ₂ -N	TP	DTP	PO ₄ -P	Chl.a	EC	CI	Si
	71×11×1	(cm)	(m)	(ద)	(-)	(mg L ⁻¹)	(mg L ⁻¹)	(mg L^{-1})	$(mg L^{-1})$	(mg L ⁻¹)	$(mg L^{-1})$	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	$(mgL^{-1})\left(mgL^{-1}\right)\left(mg$	$(mg L^{-1})$	$\left \left(\operatorname{mg} \operatorname{L}^{-1} \right) \right $	(mg L ⁻¹)	$({ m mg~L}^{-1})$	$(\mu g L^{-1})$	(mS cm ⁻¹)	(g L ⁻¹)	$(mg L^{-1})$
涸沼橋	12:50	>50		32.0	7.8	5.5	11	6.7	5.7	4.3 3.7	3.7	1.02 0.85	0.85		0.20 0.21	0.01 0.101	0.101	0.060	0.035	25	25 15.1	6.4	0.0
大貫橋	12:05	43		32.5	7.9	8.1	10	7.6	5.6	4.7	4.7 3.9	0.94	92.0	0.14	0.1	16 0.01 0.	0.099	0.038	0.007	51	15.4	5.6	0.0
高橋	14:40	>50		30.5	7.6	6.9	∞	5.3	4.3		2.7 2.5 1.20 1.12	1.20	1.12	0.05	68.0		0.01 0.197	0.159	0.158	4	0.2	<0.1	0.0
長岡橋	14:50	>50	,	29.5	7.5	7.8	9	5.1	5.1 4.1	2.5	2.5 2.4	1.43 1.35	1.35		0.04 1.17 0.01 0.071 0.047	0.01	0.071	0.047	0.037	3	0.2	<0.1	0.0

水質調査結果一覧 (9月) 米6

気象庁データ)
(水戸10時,
29.4°C
気温

晴れ

天気

令和5年9月14日

Si	(mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CI	(g/L)	1.7	3.3	1.8	3.4	1.6	3.7	2.2	3.9	2.2	3.0	1.8	3.6	2.2	2.9	2.3	2.8
EC	(mS/cm)	2.9	8.2	4.5	9.8	3.6	9.5	5.6	10.0	5.7	7.4	4.7	10.0	5.6	8.1	6.1	8.2
Chl.a	(ng/L)	29	89	83	55	69	39	65	18	64	62	63	20	50	36	49	18
PO ₄ -P	(mg/L)	0.003	0.001	0.002	0.001	0.002	0.035	0.001	0.052	0.002	0.001	0.001	990.0	0.001	0.002	0.002	0.030
dTb	(mg/L)	0.017	0.018	0.018	0.017	0.017	0.051	0.017	0.065	0.016	0.016	0.016	0.079	0.016	0.017	0.017	0.043
TP	(mg/L)	0.087	0.124	0.079	0.094	0.076	0.147	0.061	0.101	0.055	0.105	0.058	0.138	0.046	0.094	0.064	0.099
NO ₂ -N	(mg/L)	0.01	0.01	<0.01	0.01	0.01	0.02	<0.01	0.01	<0.01	0.01	0.01	0.01	<0.01	0.01	0.01	0.02
NO ₃ -N	(mg/L)	1.30	0.53	89.0	0.54	0.97	0.41	0.64	0.41	0.62	99.0	0.82	0.37	0.65	09:0	97.0	09:0
NH4-N	(mg/L)	0.01	0.59	0.02	0.52	0.02	0.88	0.02	0.82	0.01	0.28	0.01	0.95	0.01	0.44	0.03	0.54
NTb	(mg/L)	1.44	1.38	96.0	1.29	1.24	1.55	0.93	1.50	0.89	1.25	1.01	1.61	0.92	1.27	1.08	1.37
NT	(mg/L)	1.59	1.58	1.26	1.43	1.50	1.77	1.17	1.55	1.19	1.45	1.29	1.73	1.17	1.46	1.21	1.42
DOC	(mg/L)	2.6	3.2	3.4	3.3	2.9	3.3	3.4	3.2	3.3	3.1	3.1	3.2	3.2	3.0	3.1	3.0
TOC	(mg/L)	3.7	4.1	5.0	4.2	4.3	4.0	4.7	3.5	4.7	3.9	4.3	3.5	4.5	3.7	4.3	3.4
доор	(mg/L)	4.5	5.2	5.2	4.9	4.8	5.1	5.4	5.0	5.4	5.1	5.3	4.8	5.2	4.7	4.9	4.5
COD	(mg/L)	6.2	7.6	8.0	8.9	8.9	7.1	7.4	5.8	7.6	7.3	7.1	5.8	7.2	9.9	7.2	5.9
SS	(mg/L)	12	20	12	13	11	18	10	∞	6	19	10	10	∞	18	10	20
DO	(mg/L)	11.2	3.4	12.5	3.9	11.8	1.3	13.0	1.6	12.9	4.7	12.1	6.0	13.0	4.5	10.4	3.4
Hd	(-)	8.5	8.1	8.3	8.1	8.7	8.1	9.1	8.3	9.1	8.5	8.7	8.1	9.2	8.4	8.6	8.1
平	(C)	30.0	29.5	31.0	29.5	30.0	29.0	30.0	28.5	30.5	29.5	30.5	29.0	30.5	29.0	30.0	29.0
光	(m)	2.2		2.6		2.6		3.0		2.3		2.7		2.5		2.5	
透明度	(m)	0.50		0.40		0.40		0.50		0.50		0.50		09.0		0.50	
拉卡耳炎[1 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9:40		9:30		10:00		10:15		11:15		10:10		10:45		11:00	
		個沼 1 上層	個沼 1 下層	涸沼 2 上層	涸沼 2 下層	個沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	個沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

Si	$({\rm mgL^{\text{-}1}})$	0.0	0.0	0.0	0.0
CI	$(g L^{-1})$	2.6	2.8	<0.1	<0.1
EC	(mS cm ⁻¹)	7.3	7.0	0.2	0.2
DTP PO ₄ -P Chl.a EC	$\left(\operatorname{mg} L^{-1} \right) \left(mg$	18	32	3	3
PO_4 -P	$({\rm mg}\ L^{\text{-}1})$	900.0	0.001	0.073	0.025
DTP	$({\rm mgL}^{-1})$	<0.001	<0.001	<0.001	0.01 <0.001 <0.001
TP	$({\rm mg}\ {\rm L}^{\text{-}1})$	0.01 <0.001 <0.001	0.01 <0.001 <0.001	<0.01 <0.001 <0.001	<0.001
DOC TN DTN NH ₄ -N NO ₃ -N NO ₂ -N TP	$({\rm mg~L}^{\text{-1}})$	0.01		<0.01	
NO ₃ -N	(mg L ⁻¹)	<0.01	<0.01	<0.01	<0.01
N+⁺HN	$({\rm mg}\ L^{\text{-}1})$	<0.01	<0.01	<0.01	<0.01
DIN	$({\rm mg}L^{\text{-}1})$	0.00	0.00	0.00	0.00
IN	$({\rm mg}\ L^{\text{-}1})$	0.00	00.00	0.00	0.00
DOC	$({\rm mg}\ L^{\text{-}1})$	2.9	3.0	1.5	1.6
д-сор	$({\rm mg}\ L^{\text{-}1})$	3.2	3.6	1.9	2.1
ф-сор	$({\rm mg}\ L^{\text{-}1})$	4.8	4.9	2.8	3.1
СОО	$({\rm mg}\ L^{\text{-}1})$	5.2	6.1	3.3	3.6
SS	$({\rm mg}\ L^{\text{-}1})$	12	17	8	∞
DO	$({\rm mg~L^{-1}})$	6.1	7.1	7.4	8.1
Hd	(-)	8.0	8.1	7.7	7.9
水	(C)	30.0	29.5	28.0	27.5
长涨	(m)	•	,	,	,
透視度	(cm)	42	29	>50	>50
好水 時 刻	,	13:15	12:10	14:00	14:20
		涸沼橋	大貫橋	車	長岡橋

表7 水質調査結果一覧(10月)

気温 20.5°C (水戸10時, 気象庁データ)

晴れ

令和5年10月12日

Si	(mg/L)	8.7	8.1	7.9	7.9	8.7	8.1	7.9	8.1	8.0	8.0	8.7	7.9	8.0	8.1	8.2	8.1
CI	(g/L) (n	2.3	3.1	3.1	3.6	2.2	2.9	2.9	4.1	3.2	4.1	2.2	2.9	3.2	3.2	3.5	3.7
		5.3	0.8	7.8	9.3	5.1	7.5	8.2	7.	8.5		5.5	7.8	9.8	9.	9:	9.6
EC	(mS/cm)								10.7		10.1				∞	8	
Chl.a	(hg/L)	25	22	56	23	25	20	38	21	38	21	26	20	47	31	35	15
PO ₄ -P	(mg/L)	0.023	0.019	0.007	0.012	0.020	0.011	0.006	0.022	0.006	0.013	0.016	0.011	0.005	900.0	0.005	0.020
dTP	(mg/L)	0.035	0.033	0.026	0.029	0.034	0.027	0.026	0.036	0.026	0.030	0.031	0.027	0.028	0.028	0.026	0.035
TP	(mg/L)	0.092	0.112	0.107	0.093	0.084	0.071	0.076	0.085	0.079	0.079	0.081	690.0	0.083	0.073	0.074	0.094
NO ₂ -N	(mg/L)	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02
NO ₃ -N	(mg/L)	1.24	86.0	68.0	0.74	1.26	1.07	0.88	0.63	98.0	0.71	1.23	1.11	0.93	16.0	68.0	0.75
NH4-N	(mg/L)	0.05	0.12	0.02	0.17	0.04	0.07	0.02	0.34	0.02	0.22	0.03	80.0	0.02	0.04	0.04	0.27
dTN]	(mg/L)	1.62	1.44	1.33	1.39	1.66	1.53	1.35	1.39	1.27	1.38	1.55	1.54	1.37	1.41	1.39	1.50
ZI.	(mg/L)	1.79	1.80	1.87	1.67	1.76	1.74	1.51	1.59	1.64	1.64	1.64	1.73	1.68	1.59	1.68	1.65
DOC	(mg/L)	3.0	2.9	3.0	2.8	3.0	2.9	3.0	2.7	2.8	2.7	2.8	2.8	2.9	2.8	2.9	2.6
TOC	(mg/L)	3.3	4.0	4.1	3.7	3.5	3.4	3.8	3.2	3.9	3.2	3.3	3.4	3.9	3.6	3.8	3.4
doop	(mg/L)	4.6	4.3	4.5	4.3	4.8	4.2	4.5	4.2	4.5	4.2	4.3	4.1	4.8	4.4	4.4	4.2
COD	(mg/L)	6.1	7.0	7.2	5.9	5.9	5.1	5.8	5.0	6.5	5.5	5.6	5.1	6.4	6.1	6.3	5.8
SS	(mg/L)	10	24	15	18	6	∞	6	13	12	15	11	12	13	10	12	32
DO	(mg/L)	9.0	7.5	6.6	9.9	9.1	6.8	10.8	6.5	10.1	5.8	9.6	9.0	10.6	6.6	10.0	5.9
Hd	(-)	7.8	7.8	7.6	7.6	7.9	7.8	8.1	8.0	8.0	8.0	8.0	7.9	7.9	8.1	8.3	8.2
現	(೧)	21.1	20.9	22.0	21.8	20.6	20.4	20.8	21.0	21.9	21.5	20.5	20.4	20.1	20.7	21.4	21.0
光	(m)	2.0		2.4		2.7		2.9		2.4		2.7		2.4		2.4	
透明度	(m)	09.0		0.50		0.70		0.70		09.0		0.70		09.0		09:0	
拉卡旺约	4.2744.X3	9:30		9:10		9:45		10:15		11:10		9:55		10:45		11:00	
	-	涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

			0	10	_
Si	(mg L ⁻¹	8.]	8.0	10.5	11.1
CI	$(gL^{\text{-}1})$	3.6	9.3 3.7	<0.1	<0.1
EC	(mS cm ⁻¹)	12 9.5 3.6 8.1	9.3	3 0.2 <0.1	5 0.1 <0.1 11.1
d-COD TOC DOC TN DTN NH ₄ -N NO ₃ -N NO ₂ -N TP DTP PO ₄ -P Chl.a EC	$L^{-1} \left(\operatorname{mg} L^{-1} \right) \left(\operatorname$	12	61	3	5
PO ₄ -P	$({\rm mg}\ L^{\text{-}1})$	0.041	0.019	0.076	0.026 0.020
DTP	$({\rm mgL^{\text{-}1}})$	5.1 4.3 2.9 2.6 1.71 1.49 0.26 0.83 0.02 0.090 0.050	5.7 4.2 3.5 2.7 1.66 1.44 0.18 0.82 0.02 0.079 0.036	0.079	0.026
TP	$({\rm mg}\ L^{\text{-}1})$	0.090	0.079	0.110	2.05 0.04 1.84 0.01 0.064
NO ₂ -N	$({\rm mg}\; L^{\text{-}1})$	0.02	0.02	<0.01	0.01
NO ₃ -N	$({\rm mg}L^{\text{-}1})$	0.83	0.82	1.51	1.84
NH₄-N	$({\rm mg}\ L^{\text{-}1})$	0.26	0.18	0.03	0.04
DTN	$(mg L^{-1})$	1.49	1.44	1.63	2.05
Z.	$(mg L^{-1})$	1.71	1.66	1.71	2.12
DOC	(mg L^{-1})	2.6	2.7	1.6	1.9
TOC	$({\rm mg}\ L^{\text{-}1})$	2.9	3.5	1.9	2.1
доо-р	$({\rm mg}\ L^{\text{-}1})$	4.3	4.2	3.7 2.9 1.9 1.6 1.71 1.63 0.03 1.51 <0.01 0.110	3.6
СОО	$({\rm mg}\ L^{\text{-}1})$	5.1	5.7	3.7	10 4.7 3.6 2.1 1.9 2.12
SS	$({\rm mg}\ L^{\text{-}1})$	12	16	6	10
DO	$({\rm mg}\; L^{\text{-}1})$	6.0	7.6	10.1	9.2
Hd	(-)	8.0	8.2	8.0	7.9
子	(೧)	21.1	21.0	20.4	20.8
关	(m)				
透視度	(cm)	45	32	>50	>50
拉大群处	7	12:39	12:15	14:40	14:45
		涸沼橋	大貫橋	車	長岡橋

水質調査結果一覧(11月) 米8

16.4°C (水戸10時, 気象庁データ)

晴れ

天気

令和5年11月9日

CI	(g/L)	4.6	5.6	4.7	5.6	4.1	9.9	5.2	9.9	5.3	5.5	4.3	7.0	5.3	5.5	5.4	5.6
EC	(mS/cm)	11.5	15.1	12.5	15.2	10.9	17.8	13.4	17.7	14.2	14.6	11.7	18.3	13.8	14.8	14.5	14.8
Chl.a	(mg/L)	29	13	28	11	13	13	20	14	21	12	11	12	17	12	17	16
PO ₄ -P	(mg/L)	0.023	0.021	0.012	0.015	0.021	0.014	0.012	0.024	0.012	0.017	0.018	0.013	0.012	0.012	0.012	0.022
dTP	(mg/L)	0.061	0.047	0.053	0.029	0.059	0.054	0.039	0.035	0.038	0.028	0.050	0.064	0.034	0.027	0.038	0.030
TP	(mg/L)	0.126	0.110	0.120	0.061	0.114	0.092	0.083	080.0	0.083	990.0	0.084	0.102	0.064	0.062	0.094	9/0.0
NO ₂ -N	(mg/L)	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02
NO ₃ -N	(mg/L)	1.22	16:0	0.88	0.74	1.23	66.0	0.88	0.63	0.85	0.70	1.20	1.10	0.92	06.0	68.0	0.74
NH4-N	(mg/L)	0.07	0.14	90.0	0.18	0.05	60.0	90.0	0.34	90.0	0.25	0.04	60.0	90.0	80.0	0.07	0.27
NTp	(mg/L)	1.60	1.44	1.55	1.33	1.82	1.41	1.43	1.33	1.41	1.33	1.68	1.46	1.37	1.30	1.43	1.38
NI	(mg/L)	2.00	1.67	1.91	1.51	2.04	1.60	1.65	1.57	1.66	1.42	1.76	1.69	1.54	1.45	1.65	1.53
DOC	(mg/L)	2.6	2.5	2.7	2.4	2.4	2.2	2.4	2.2	2.4	2.4	2.4	2.2	2.3	2.2	2.3	2.3
TOC	(mg/L)	3.0	2.8	3.0	2.8	2.7	2.7	3.0	2.7	3.1	2.9	2.6	2.6	2.9	2.9	3.0	2.9
dcod	(mg/L)	4.2	4.1	4.4	3.7	4.4	3.8	4.1	3.5	4.1	3.8	4.0	3.7	4.0	3.8	3.9	3.2
СОО	(mg/L)	5.0	5.4	5.7	5.0	5.3	4.9	5.5	4.8	5.6	4.9	5.1	4.8	5.2	4.7	5.2	5.3
SS	(mg/L)	13	19	14	14	11	∞	11	17	12	13	12	15	∞	14	18	23
DO	(mg/L)	6.4	4.3	6.4	5.3	6.9	2.3	7.7	3.5	7.7	9.9	7.0	2.4	7.9	6.5	7.0	5.6
Hd	(-)	7.7	7.7	7.4	7.5	7.8	7.6	7.8	7.8	8.0	8.1	7.8	7.6	7.9	8.0	8.0	8.0
光	(్ల	19.5	20.5	19.5	19.5	19.0	19.5	19.0	19.0	19.5	19.0	19.0	19.0	19.0	19.5	19.0	19.0
米	(m)	1.9		2.3		2.4		2.7		2.3		2.5		2.3		2.4	
透明度	(m)	09.0		0.70		0.70		0.70		09.0		0.70		08.0		0.70	
拉卡联约	で 大 大 大 大 大 大 大 大 大 大 大 大 大	9:20		9:05		9:30		9:50		10:45		9:40		10:15		10:30	
		墨山	塵	壓出	座	幽山	隆	墨山	塵	墨山	座	墨山	严	幽	座	壓	座
		沼 1	沼 1	<u>ұ</u> п 23	<u>К</u> П	ÉΠ	ĽΠ	й 4	й 4	沼 5	ÉΠ	9 型	9 思	沼 7	沼 7	£ Ω	© R¤
		闽	闸	風沼	風沼	風沼	涠沼	涠沼	風沼	無	風沼	興	無	無	闽	風沼	烟沼

7.3

8.0

Si	$({\rm mgL^{-1}})$	7.8	7.9	11.3	12.9
CI	$(g L^{-1})$	5.7	5.3	<0.1	<0.1
EC	(mS cm ⁻¹)	14.7	14.3	0.2	0.2
	$\left({\rm mg \; L^{-1}} \right) \left({\rm mg \; L^{-1}} \right) \left({\rm \mu g \; L^{-1}} \right) \left({\rm ms \; cm^{-1}} \right) \left({\rm g \; L^{-1}} \right)$	5	6	2	3
DTP PO ₄ -P Chl.a	$({\rm mg~L}^{\text{-1}})$	0.044	0.023	0.075	0.019
DTP	$({\rm mg}\ L^{\text{-}1})$	0.070	0.049	0.129	0.033
TP	$({\rm mg}\ L^{\text{-}1})$	0.098	0.081	0.150	0.052
NH ₄ -N NO ₃ -N NO ₂ -N TP	$\left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^{-1} \right)$	0.02	0.02	0 <0.01 0.	0.01
NO ₃ -N	$({\rm mg}\ L^{\text{-}1})$	0.82	0.81	1.50	1.82
NH⁴-N	$({\rm mg}\ L^{\text{-}1})$	0.28	0.20	0.03	0.04
NIO	$({\rm mg~L}^{-1})$	1.55	1.47	1.65	2.15
Z	$({\rm mg~L}^{-1})$	1.65	1.56	1.90	2.21
DOC	$({\rm mg~L}^{-1})$	2.3	2.3	1.7	1.8
TOC	(mg L ⁻¹)	2.6	2.6	1.8	1.8
ПОЭ-Р	$({\rm mg}{\rm L}^{\text{-}1})$	3.6	3.8	3.1	3.1
СОО	(mg L ⁻¹)	4.3	5.0	3.8	3.4
SS	$({\rm mg}\ L^{\text{-}1})$	13	15	9	3
DO	$({\rm mg~L^{\text{-}1}})$	4.8	5.2	9.3	6.6
Hd	(-)	7.8	7.9	7.8	7.8
光	(೧)	19.5	19.5	17.5	18.0
米	(m)				
透視度	(cm)	>50	36	>50	>50
拉 大 群 交		11:40	11:30	13:30	13:40
		涸沼橋	大貫橋	配	長岡橋

7.8

7.5

表9 水質調査結果一覧(12月)

13.1°C (水戸10時, 気象庁データ)

晴れ

天気

令和5年12月7日

	_	_	~	6	· ·	000	7	00	_	10	_	0	00	9	9	2	
Si	(mg/L)	8.7	6.5	7.9	6.5	8.8	6.2	8.8	6.1	8.5	7.7	9.0	5.8	8.6	9.9	7.6	6.3
CI	(g/L)	6.4	10.2	6.9	9.4	6.0	10.3	6.4	10.4	9.9	7.6	5.9	11.1	6.4	9.5	8.0	8.6
EC	(mS/cm)	18.7	26.9	20.5	26.0	17.8	28.4	18.7	28.7	19.1	22.0	17.6	29.0	19.0	25.6	22.9	27.4
Chl.a	(ng/L)	123	14	42	23	34	12	16	15	29	17	10	11	12	25	5	3
PO ₄ -P	(mg/L)	0.034	0.015	0.012	600.0	0.013	910.0	0.007	800.0	0.008	0.005	0.005	0.034	0.005	0.010	900.0	0.013
dTb	(mg/L)	0.047	0.028	0.024	0.021	0.023	0.028	0.017	0.017	0.018	0.015	0.015	0.045	0.015	0.020	0.016	0.020
TP	(mg/L)	0.106	0.085	0.049	0.050	0.057	820.0	0.039	0.051	0.037	0.031	0.037	0.103	0.037	0.038	0.034	0.037
NO ₂ -N	(mg/L)	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01
NO ₃ -N	(mg/L)	0.72	0.19	69.0	0.33	0.87	0.12	0.83	0.32	0.81	69.0	96.0	0.10	68.0	0.54	08.0	0.70
NH4-N	(mg/L)	0.37	0.44	0.15	0.16	0.14	0.25	60.0	0.15	0.10	90.0	0.07	0.43	0.07	80.0	90.0	60.0
NTb	(mg/L)	1.50	96.0	1.17	0.84	1.37	0.73	1.24	92.0	1.23	1.07	1.28	88.0	1.25	68.0	1.15	1.00
NI	(mg/L)	2.04	1.23	1.39	0.93	1.51	0.84	1.26	88.0	1.30	1.09	1.32	1.05	1.27	0.97	1.13	1.01
DOC	(mg/L)	2.8	2.3	2.3	2.2	2.2	2.2	2.2	2.0	2.4	2.1	2.2	2.6	2.1	1.9	2.0	1.8
TOC	(mg/L)	3.7	2.7	2.8	2.7	2.8	2.8	2.5	2.3	2.5	2.3	2.3	2.7	2.4	2.6	2.1	1.9
dcod	(mg/L)	4.5	3.4	3.0	3.8	3.8	3.4	3.5	2.8	3.5	3.0	3.2	3.4	3.1	2.5	2.8	2.4
СОО	(mg/L)	7.1	4.0	4.8	4.0	4.4	3.7	3.8	3.4	4.3	3.7	3.5	4.3	3.7	3.8	3.6	2.7
SS	(mg/L)	14	16	8	14	12	17	7	20	12	14	8	18	10	17	13	17
DO	(mg/L)	15.1	1.1	13.1	8.0	14.1	0.7	14.0	4.7	13.1	11.5	13.5	<0.5	12.7	6.6	10.8	8.9
Hd	(-)	8.7	8.2	8.5	8.4	8.4	8.1	8.2	8.2	8.7	8.7	8.4	8.1	8.5	8.4	8.6	8.5
当	(೧)	12.0	13.2	12.0	13.0	11.5	13.6	12.2	13.4	11.5	11.5	11.4	13.9	11.5	11.9	12.1	12.0
光	(m)	2.1		2.4		2.7		3.1		2.6		2.8		2.6		2.7	
透明度	(m)	09.0		1.10		06:0		1.20		06:0		1.60		1.50		1.30	
拉卡陆拉		9:40		9:30		10:05		10:30		11:30		10:15		11:00		11:20	
-44	-	涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	題子 9 起駅	屋上 9 民駅	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

Si	$({\rm mg}L^{\text{-}1})$	3.4	4.8	11.9	14.5
CI	$(g L^{-1})$	14.3	12.4	<0.1	<0.1
EC	(mS cm ⁻¹)	38.3	32.8	0.3	0.2
PO ₄ -P Chl.a	$\left \left(\operatorname{mg} L^{-1}\right)\left \left(\operatorname{mg} L^{-1}\right)\right \left(\operatorname{\mug} L^{-1}\right)\right \left(\operatorname{mS} \operatorname{cm}^{-1}\right)\right \left(\operatorname{g} L^{-1}\right)$	1	2	2	1
PO ₄ -P	$({\rm mg}\ L^{\text{-}1})$	0.033	0.029	0.200	0.024
DTP	$({\rm mg}\ L^{\text{-}1})$	0.030	0.031	0.193	0.032
TP) (mg L ⁻¹)	0.045	0.041	0.226	0.047
NO ₂ -N	(mg L	<0.01	<0.01	0.01	0.03
NH ₄ -N NO ₃ -N NO ₂ -N	$\left(\operatorname{mg} L^{-1}\right) \left(\operatorname{mg} L^{-1}\right) \left(\operatorname{mg} L^{-1}\right) \left(\operatorname{mg} L^{-1}\right) \left(\operatorname{mg} L^{-1}\right) \left(\operatorname{mg} L^{-1}\right)$	0.44	0.62	1.86	2.24
N+⁴N	$({\rm mg}\ L^{\text{-}1})$	0.15	0.16	0.03	90.0
DTN	$({\rm mg}\ L^{\text{-}1})$	0.74	0.99	2.07	2.45
NI	$({\rm mg}\ L^{\text{-}1})$	0.75	96.0	2.03	2.54
DOC	$({\rm mg}\ L^{\text{-}1})$	1.3	1.4	1.6	1.8
TOC	$({\rm mg}\ L^{\text{-}1})$	1.3	1.5	1.6	1.7
сор д-сор	$({\rm mg}\ L^{\text{-}1})$	1.3	1.3	2.7	2.9
СОД	$({\rm mg}\ L^{\text{-}1})$	1.4	2.0	2.9	3.1
SS	$({\rm mg}\ L^{\text{-}1})$	21	18	3	7
DO	$({\rm mg~L^{-1}})$	8.3	8.2	10.7	10.5
Hd	(-)	8.2	8.3	8.2	8.2
水温	(೧)	14.9	14.0	12.3	13.5
光	(m)	•			,
透視度	(cm)	>50	>50	>50	>50
松木時刻	?	13:30	13:10	14:20	14:30
		涸沼橋	大貫橋	極	長岡楠

表 10 水質調査結果一覧(1月)

気温 4.4°C (水戸10時, 気象庁データ)

Si	(mg/L)	4.3	3.3	4.1	2.9	4.2	2.8	4.1	2.4	4.0	3.7	4.2	2.6	4.0	3.8	4.0	3.9
CI	(g/L)	10.5	12.8	10.6	13.5	10.2	14.6	10.6	15.1	10.9	11.9	10.7	14.9	10.7	11.2	11.0	11.2
EC	(mS/cm)	29.6	35.0	29.5	36.1	29.3	37.9	30.3	39.2	30.1	31.8	29.6	39.2	30.1	31.2	30.5	30.9
Chl.a	(mg/L)	37	08	39	47	40	44	42	30	40	20	40	40	39	46	40	41
PO ₄ -P	(mg/L)	0.004	0.011	0.003	0.004	0.004	0.009	0.004	0.007	0.003	0.003	0.004	0.009	0.005	0.002	0.005	0.005
dTb	(mg/L)	0.018	0.034	0.020	0.022	0.020	0.028	0.019	0.020	0.020	0.021	0.019	0.025	0.021	0.020	0.021	0.020
TP	(mg/L)	0.051	0.093	0.049	0.057	0.055	0.067	0.049	0.071	0.053	0.054	0.051	0.075	0.050	0.052	0.054	0.052
NO ₂ -N	(mg/L)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
NO ₃ -N	(mg/L)	0.89	0.54	0.85	0.51	0.91	0.42	98.0	0.34	0.84	0.72	0.87	0.34	06:0	0.78	0.88	0.87
NH4-N	(mg/L)	0.02	0.23	0.03	0.18	0.03	0.31	0.03	0.36	0.03	0.04	0.03	0.44	0.03	0.03	0.03	0.03
NTb	(mg/L)	1.23	1.15	1.23	1.00	1.27	1.06	1.20	1.01	1.20	1.10	1.20	1.09	1.27	1.14	1.25	1.25
IN	(mg/L)	1.43	1.52	1.46	1.22	1.52	1.28	1.46	1.12	1.43	1.31	1.34	1.32	1.44	1.24	1.37	1.43
DOC	(mg/L)	2.0	2.2	2.0	1.8	1.9	1.8	2.1	1.7	2.1	2.0	2.0	1.7	2.0	2.1	2.0	1.9
TOC	(mg/L)	2.9	3.5	2.9	2.5	2.9	2.3	2.9	2.0	2.9	3.0	2.9	2.3	2.8	2.9	2.8	2.8
dCOD	(mg/L)	2.7	3.5	2.6	2.1	2.8	2.3	2.9	2.4	3.4	3.5	3.4	2.5	3.8	3.0	3.0	2.9
COD	(mg/L)	3.7	6.0	4.6	3.4	4.6	3.0	3.8	3.0	3.9	4.0	3.9	3.4	4.6	4.7	4.1	2.9
SS	(mg/L)	15	17	15	17	20	25	18	32	17	17	12	11	19	18	19	∞
DO	(mg/L)	11.9	8.4	11.9	7.4	12.0	4.9	12.0	3.4	12.1	11.7	12.2	3.6	11.7	11.5	11.7	11.1
Hd	(-)	8.1	8.1	7.0	7.3	8.4	8.1	8.3	8.1	9.8	8.5	8.3	8.0	8.2	8.5	8.5	8.5
平	(C)	0.9	7.0	7.0	7.5	5.5	8.5	7.0	10.0	7.0	7.5	6.0	8.0	7.0	7.0	7.0	7.0
茶	(m)	2.0		2.4		2.5		3.1		2.4		2.7		2.6		2.7	
透明度	(m)	0.80		0.70		0.70		0.70		0.70		0.80		09.0		0.70	
拉水陆刻	1本 ひゝ b d y d y d y d y d y d y d y d y d y d	9:30		9:20		9:45		10:10		11:20		9:55		10:45		11:05	
		涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

Si	$({\rm mg}L^{\text{-}1})$	1.4	3.8	<0.1	10.4
Cľ	$ \left(mg L^{-1} \right) \left(mg L$	17.2	11.4		2 <0.1 10
EC	(mS cm ⁻¹)	3 45.4	35 31.7	0.3	0
DTN NH ₄ -N NO ₃ -N NO ₂ -N TP DTP PO ₄ -P Chl.a EC	$(\mu g \; L^{\text{-}1})$			4	1
PO ₄ -P	$({\rm mg}\ L^{\text{-}1})$	0.017	0.004	0.224	0.030
DTP	$({\rm mg}{\rm L}^{\text{-}1})$	0.020	0.018	0.222	0.060 0.036
TP	$({\rm mg}~{\rm L}^{\text{-1}})$	<0.01 0.028	0.052	<0.01 0.01 0.260 0.222	090.0
NO ₂ -N	$({\rm mg\;L^{\text{-1}}})$	<0.01	0.02	0.01	<0.01 0.01
NO ₃ -N	$({\rm mg}\ L^{\text{-}1})$	0.32	0.83		<0.01
NH⁴-N	$({\rm mg}\ L^{\text{-}1})$	0.07	0.02	0.07	0.11
DTN	$({\rm mg}{\rm L}^{\text{-}1})$	0.54	1.13	1.98	2.54 2.46
AT	$({\rm mg~L}^{\text{-1}})$	0.59	2.0 1.39	2.10	2.54
DOC	$({\rm mg}\ L^{\text{-}1})$	1.2		1.5 1.5 2.10 1.98	1.6
d-cod Toc Doc TN	$({\rm mg}\ L^{\text{-}1})$	1.2	2.4	1.5	1.6
ф-сор	$({\rm mg}\ L^{\text{-}1})$	1.1	3.4	2.9	2.9
СОД	$({\rm mg}\ L^{\text{-}1})$	1.7	3.8	3.2	3.2
SS	$({\rm mg}\ L^{\text{-}1})$	33	16	3	3
DO	$({\rm mg~L^{-1}})$	8.2	11.2	12.7	12.4
Hd	(-)	7.9	8.2	8.5	8.3
当	(్లు	12.5	7.8	6.9	9.4
米	(m)				ı
透視度	(cm)	>50	36	>50	>50
探水時刻	,	13:00	13:20	14:05	14:20
		涸沼橋	大貫橋	恒極	長岡橋

令和6年1月17日

表 11 水質調査結果一覧 (2月)

気象庁データ)
(水戸10時,
4.2°C
気温

快晴

天氛

令和6年2月7日

Si	(mg/L)	3.8	3.7	4.0	3.6	4.2	3.7	4.0	3.3	4.1	3.9	4.2	3.7	4.1	4.0	4.0	2.1
CI.	(g/L)	8.5	8.9	7.9	9.2	7.2	9.5	7.9	10.9	7.7	8.7	7.6	8.6	7.9	8.6	8.1	14.1
EC	(mS/cm)	24.1	25.1	22.9	26.0	20.0	26.0	22.1	30.4	24.0	22.6	21.8	26.5	22.3	24.5	23.1	37.7
Chl.a	(hg/L)	51	52	39	31	42	24	44	18	49	37	41	23	52	27	36	6
PO ₄ -P	(mg/L)	0.003	900.0	0.002	0.004	0.004	900.0	0.004	900.0	0.004	0.002	0.003	900.0	0.003	0.002	0.002	0.012
dTP	(mg/L)	0.023	0.026	0.019	0.023	0.023	0.024	0.021	0.021	0.024	0.019	0.022	0.023	0.023	0.019	0.021	0.020
TP	(mg/L)	980.0	0.094	0.067	690.0	0.077	0.081	0.063	0.053	0.088	0.058	0.065	0.065	0.085	890.0	0.063	0.042
NO ₂ -N	(mg/L)	0.04	0.05	0.04	90.0	0.04	80.0	0.04	0.04	0.04	0.04	0.04	0.07	0.04	0.03	0.03	0.01
NO ₃ -N	(mg/L)	1.08	66.0	1.15	16:0	1.25	28.0	1.23	92.0	1.26	1.11	1.30	0.84	1.22	1.11	1.22	0.55
NH4-N	(mg/L)	0.02	0.13	0.01	0.19	0.03	0.26	0.02	0.25	0.02	0.02	0.02	0.32	0.02	0.04	0.01	80.0
NTb	(mg/L)	1.36	1.44	1.44	1.40	1.51	1.47	1.45	1.25	1.52	1.43	1.53	1.48	1.50	1.41	1.42	08.0
NI	(mg/L)	1.84	1.84	1.66	1.56	1.86	1.61	1.79	1.34	1.91	1.62	1.72	1.68	1.82	1.57	1.61	0.83
DOC	(mg/L)	2.3	2.3	2.4	2.4	2.3	2.5	2.4	2.0	2.2	2.2	2.2	2.4	2.3	2.1	2.2	1.4
TOC	(mg/L)	3.5	3.3	3.1	3.1	3.1	2.9	3.1	2.5	3.2	2.9	2.8	2.7	3.2	2.6	2.9	1.5
доор	(mg/L)	4.2	3.2	3.8	3.6	3.9	3.7	4.3	3.2	4.2	3.8	4.0	4.0	4.3	3.7	4.1	2.5
COD	(mg/L)	5.8	5.5	5.0	4.2	5.3	4.5	5.8	3.9	5.8	4.7	5.0	4.3	6.1	4.9	5.1	2.8
SS	(mg/L)	23	11	10	18	16	13	13	18	19	16	14	18	19	20	17	21
DO	(mg/L)	13.3	9.6	13.6	7.5	13.8	6.2	13.6	6.4	13.8	12.4	13.7	5.4	14.2	11.6	12.7	8.9
Hd	(-)	7.9	8.1	7.4	7.5	8.4	8.1	8.2	7.9	8.5	8.0	8.2	8.1	8.2	8.3	8.5	8.2
· · · · · · · · · · · · · · · · · · ·	(C)	6.9	7.2	7.0	8.1	6.4	7.0	9.9	8.8	7.4	6.2	6.2	6.9	7.5	6.7	7.2	9.8
光	(m)	2.2		2.7		2.7		3.1		2.6		2.9		2.7		2.8	
透明度	(m)	0.70		0.70		0.70		0.80		0.70		09.0		0.70		0.70	
拉卡陆约	14-27-44 XI	9:40		9:20		10:00		10:30		11:50		10:10		11:00		11:30	
		涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

	1	2	S	ж	4
Si	$({\rm mgL}^{\text{-1}})$	4.5	3.5	6.3	8.4
CI	$(gL^{\text{-}1})$	6.7	9.0	<0.1	<0.1
EC	(mS cm ⁻¹)	3 20.7	3 28.5	0.3	0.2
Chl.a	$(\mu g \ L^{\text{-}1})$	т	3	5	9
DTP PO ₄ -P Chl.a	$({\rm mg}\ L^{\text{-}1})$	0.035	0.020	0.099	0.032
DTP	$({\rm mgL^{\text{-}1}})$	0.040	0.02 0.046 0.027	0.135 0.107	0.04 0.084 0.041
TP	$({\rm mg}{\rm L}^{\text{-1}})$	0.062	0.046	0.135	0.084
NO ₂ -N	(mg L^{-1})	1.02 0.04 0.062 0.040		1.52 0.02	0.04
NO ₃ -N	$({\rm mg~L}^{\text{-1}})$		0.77	1.52	2.20
DIN NH ₄ -N NO ₃ -N NO ₂ -N TP	$\left(\operatorname{mg} L^{-1} \right) \left(\operatorname{mg} L^$	1.4 1.70 1.65 0.55	1.17 1.10 0.20	3 0.09 1	0.19
DIN	$({\rm mg}{\rm L}^{\text{-}1})$	1.65	1.10	1.6	2.1 2.51 2.36
ZI.	$({\rm mg}\ L^{\text{-}1})$	1.70	1.17	1.9 1.64	2.51
DOC	$({\rm mg}L^{\text{-}1})$	1.4	1.3		
TOC	$({\rm mg}\ L^{\text{-}1})$	1.4	1.2	2.1	2.4
сор д-сор тос	$({\rm mg}\ L^{\text{-}1})$	2.5	1.7	3.7	3.9
COD	$({\rm mg}L^{\text{-}1})$	2.7	2.1	3.9	4.4
SS	$({\rm mg}\ L^{\text{-}1})$	6	12	5	8
DO	$({\rm mg}\; L^{\text{-}1})$	10.0	10.3	11.6	12.0
Hd	(-)	8.0	7.9	8.1	8.1
光	(೧)	10.9	10.8	9.3	10.3
光	(m)		1		ı
透視度	(cm)	>50	>50	>50	44
拉大陆经	Ž ,	13:20	13:30	14:20	14:30
		涸沼橋	大庫橋	卓	長岡橋

表 12 水質調査結果一覧 (3月)

気温 7.6°C (水戸10時, 気象庁データ)

豐

令和6年3月11日

Si	(mg/L)	7.3	0.9	6.3	5.8	6.5	5.9	9.9	5.8	9.9	6.3	7.0	5.8	6.7	6.2	6.5	6.3
CI	(g/L)	4.8	6.2	5.1	6.1	4.5	0.9	4.8	6.1	4.6	5.3	4.6	6.1	4.6	5.2	4.9	5.1
EC	(mS/cm)	12.8	16.4	14.5	16.8	12.4	16.9	13.1	17.0	13.1	14.7	12.7	17.0	12.9	14.6	13.1	14.2
Chl.a	(hg/L) (1	18	69	26	55	17	38	22	41	22	32	20	44	23	28	30	43
PO ₄ -P	(mg/L)	0.005	0.004	0.002	0.003	0.004	0.003	0.003	0.002	0.003	0.002	0.003	0.004	0.003	0.003	0.004	0.005
dTP	(mg/L)	0.030	0.044	0.032	0.040	0.028	0.037	0.029	0.036	0.032	0.034	0.030	0.036	0.031	0.033	0.033	0.036
TP	(mg/L)	0.073	0.135	0.071	0.107	090.0	0.090	0.083	0.078	0.065	0.077	0.063	0.092	0.079	0.072	0.067	0.088
NO ₂ -N	(mg/L)	0.04	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.04	0.04	0.04	90.0	0.04	0.04	0.04	0.04
NO ₃ -N	(mg/L)	1.25	0.85	1.09	98.0	1.40	0.88	1.27	0.88	1.30	1.04	1.28	98.0	1.39	1.06	1.28	1.09
N-⁺HN	(mg/L)	0.03	90.0	0.02	0.05	0.01	0.04	0.02	0.04	0.02	0.02	0.01	0.05	0.01	0.02	0.02	0.03
NTb	(mg/L)	1.52	1.44	1.51	1.37	1.70	1.39	1.63	1.39	1.62	1.46	1.57	1.38	1.72	1.48	1.59	1.53
IN	(mg/L)	1.84	2.09	1.76	1.90	1.90	1.69	1.75	1.69	1.87	1.78	1.83	1.68	2.04	1.65	1.90	1.84
DOC	(mg/L)	2.8	3.3	3.1	3.2	2.8	3.0	3.0	3.1	2.9	2.9	2.7	3.1	2.9	2.8	3.0	3.0
TOC	(mg/L)	3.5	5.0	4.0	4.8	3.3	4.1	3.6	4.1	3.6	4.0	3.4	4.3	3.6	3.7	3.8	4.3
dcop	(mg/L)	3.6	4.8	3.9	4.1	3.6	3.8	4.1	3.8	4.6	4.4	4.2	4.7	4.6	4.7	4.9	4.6
COD	(mg/L)	5.2	8.3	5.8	6.5	4.8	5.2	5.6	6.1	5.4	5.4	5.2	6.5	5.1	6.0	5.3	4.6
SS	(mg/L)	10	19	11	16	8	12	10	13	10	11	6	13	10	11	6	14
DO	(mg/L)	11.9	11.2	12.8	11.2	12.1	12.0	12.6	10.8	12.5	13.0	12.4	10.3	12.6	12.3	12.8	12.0
Hd	(-)	7.8	8.1	7.2	7.4	8.5	8.5	8.5	8.5	8.7	8.7	8.6	8.5	8.6	9.8	8.7	8.7
光	(C)	9.5	9.5	9.0	9.5	9.0	9.5	8.5	9.5	9.5	9.5	0.6	5.6	9.0	9.5	9.5	9.5
米	(m)	2.0		2.3		2.5		2.9		2.2		2.7		2.5		2.5	
透明度	(m)	0.70		0.70		06.0		08.0		08.0		06.0		0.70		09:0	
拉水陆刻	3木 ムヘムマ 次5	9:20		9:10		9:40		10:00		10:55		9:50		10:30		10:40	
		涸沼 1 上層	涸沼 1 下層	涸沼 2 上層	涸沼 2 下層	涸沼 3 上層	涸沼 3 下層	涸沼 4 上層	涸沼 4 下層	涸沼 5 上層	涸沼 5 下層	涸沼 6 上層	涸沼 6 下層	涸沼 7 上層	涸沼 7 下層	涸沼 8 上層	涸沼 8 下層

Si	$(mg L^{-1})$	6.5	6.5	9.1	10.9
CI	$\left(mg \ L^{-1} \right) \left(mg \ L^$	5.0	4.6	<0.1	<0.1
EC	(mS cm ⁻¹)	14.1	13.2	0.2	0.2
DTP PO ₄ -P Chl.a EC	$(\mu g \; L^{\text{-}1})$	31	28	3	3
PO ₄ -P	$({\rm mg}\ L^{\text{-}1})$	0.005	0.004	0.057	0.022
DTP	$({\rm mg}{\rm L}^{\text{-}1})$	0.030	0.031	0.058	0.026
DTN NH4-N NO3-N NO2-N TP	$({\rm mg}\ L^{\text{-}1})$	0.079	0.074	1 0.081 0	950.0
NO ₂ -N	$({\rm mg}\; L^{\text{-}1})$	0.03	0.04	0.0	0.03
NO ₃ -N	$({\rm mg}\ L^{\text{-}1})$	<0.01	<0.01	<0.01	<0.01
NH₄-N	$({\rm mg}\ L^{\text{-}1})$	0.02	0.02	0.03	0.12
DTN	(mg L ⁻¹)	1.53	1.63	1.71	2.44
Z.I.	$({\rm mg~L}^{-1})$	1.83	1.81	1.71	2.34
DOC	$({\rm mg~L}^{-1})$	2.7	2.9	1.4	1.6
TOC	(mg L ⁻¹)	3.5	3.6	1.4	1.8
d-cod Toc	$({\rm mg}\ {\rm L}^{\text{-1}})$	4.6	4.9	2.5	3.2
СОО	$(mg L^{-1})$	4.8	5.5	2.6	3.3
SS	$({\rm mg}\ L^{\text{-}1})$	12	∞	3	5
DO	$({\rm mg}\; L^{\text{-}1})$	12.1	12.6	11.3	11.9
Hd	(-)	8.5	8.5	8.2	8.0
当	(ద)	9.5	10.0	10.5	12.5
光	(m)			-	-
透視度	(cm)	37	40	>50	>50
	?	13:20	13:00	14:20	14:30
		涸沼橋	大貫橋	極極	長岡橋

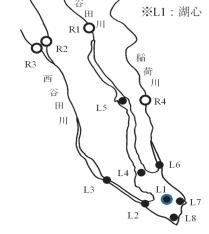
1-8 牛久沼の水質保全に関する調査事業

1 目的

牛久沼(図1)は流域で様々な排出負荷削減対策が行われているが、化学的酸素要求量等の項目で 水質汚濁に係る環境基準を達成していない。そのため、牛久沼における詳細調査を実施し、汚濁機構 解明のための基礎資料とする。

2 調査方法

(1) 水質調査


- ① 調査期間:令和5年4月~令和6年3月、月1回
- ② 調査地点(図1):

【湖内】●で示す8地点

- ・L1-L8 の上層 (水面下 50 cm)
- ・L1-L6、L8の下層(湖底上 50 cm)

【河川】○で示す4地点

・流入河川 4 地点 (R1-R4)

③ 調査項目および測定方法

上層および下層の湖水は、小型ペリスタルティックポンプ(テ クノインターナショナル社、サンプリングチューブ外径 13 mm)

牛久沼調査地点 図 1

で採取した。河川水は、ロープ付きバケツで採水した。調査項目および測定方法は表1に示す。 なお、溶存態の項目(dCOD、DOC、dTN、dTP、各態窒素、りん酸イオン)については、孔径 1.0 μ m のろ紙 (Whatman GF/B、 ϕ = 45 mm) を通過したろ水を用いて測定した。また、Chl.a の測定 については、試料水を孔径 1.2 μm のろ紙 (Whatman、GF/C) を用いてろ別し、得られたろ紙を一 昼夜凍結した後エタノールで1日間抽出し、浮遊物質を遠心分離(3000 rpm、10分)して得られ た上澄み液を分析に供した。

	表 1	牛久沼におけ	「る水質測定項目ならびにその測定方)	法
--	-----	--------	--------------------	---

測定項目		測定方法	使用機器
水深			重りつきメジャー
透明度	湖沼調査法		直径30cm透明度板
水温	JIS K 0102	7.2 水温	ペッテンコーヘル
рН	JIS K 0102	12.1 ガラス電極法	東亜DKK、WM-32EP
電気伝導率(EC)			東亜DKK、WM-32EP
溶存酸素量(DO)	JIS K 0102	32.1 よう素滴定法	
懸濁物質量(SS)	JIS K 0102	14.1 懸濁物質	
化学的酸素要求量(COD、dCOD)	JIS K 0102	17. 100℃における過マンガン酸カリウムによる酸素消費量(COD _{Mn})	
有機態炭素量(TOC、DOC)	JIS K 0102	22.2 燃焼酸化-紫外線式TOC自動計測法	島津製作所、TOC-L
全窒素(TN、dTN)	JIS K 0170-3	流れ分析法による水質試験方法一第3部:全窒素	ビーエルテック、swAAt
全りん(TP、dTP)	JIS K 0170-4	流れ分析法による水質試験方法一第4部:りん酸イオン及び全りん	ビーエルテック、swAAt
各態窒素(NO ₃ -N, NO ₂ -N, NH ₄ -N)	JIS K 0170-1, 2	流れ分析法による水質試験方法一第3部:全窒素	ビーエルテック、QuAAtro
りん酸イオン(PO ₄ -P)	JIS K 0170-4	流れ分析法による水質試験方法一第4部:りん酸イオン及び全りん	ビーエルテック、QuAAtro
クロロフィルa(Chl.a)	湖沼調査法	ユネスコ法(エタノール抽出)	島津製作所、UV-2550
イオン状シリカ(Si)	JIS K 0101	44.1.2 モリブデン青吸光光度法	島津製作所、UV-2550

(2) プランクトン調査

① 調査期間:2(1)①と同じ

② 調查地点:湖心(L1)

③ 調査項目:植物プランクトンの個体数ならびに細胞体積及び動物プランクトンの個体数

④ 調査方法:

植物プランクトンについては、上層の湖水を 400 mL 採集し、25%グルタルアルデヒド溶液を

終濃度約4%になるように加えて試料とした。試料に含まれる植物プランクトンは種レベルまで 同定し、種ごとの細胞数ならびに細胞体積を測定した。その後、細胞数に細胞体積を乗じて各種 の合計細胞体積を算出し、すべての種の合計細胞体積を加算して総細胞体積とした。

動物プランクトンについては、調査地点において小型プランクトンネット(離合社製、5513、 目合い 0.1 mm) を用いて湖底直上 0.5 m から湖水面まで鉛直引きし、得られた湖水試料に 25%グ ルタルアルデヒド溶液を終濃度が約4%になるように加えて試料とした。試料に含まれる動物プ ランクトンは種レベルまで同定し、種ごとの個体数密度を測定した。

3 調査結果概要

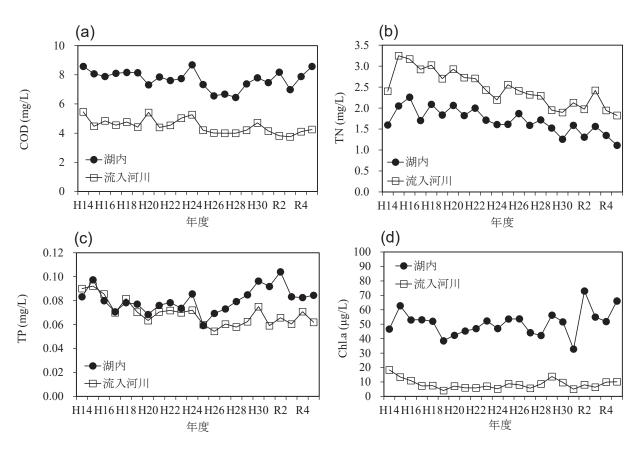
(1) 水質(図2及び図3)

水質の測定結果は、原則として公共用水域水質測定結果の報告方法に準拠して丸め、表1~12に 示した。以下①から④では、湖内の値として L1-L8 上層の平均値を報告する。

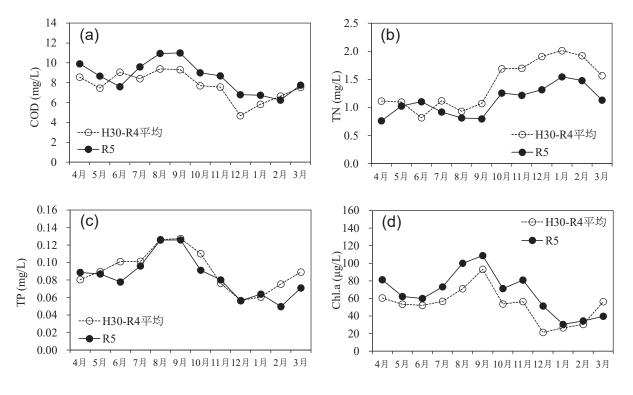
① COD

- ・令和5年度における年平均値は、湖内(上層、湖内8地点平均)では8.6 mg/Lで、前年度(7.9 mg/L) より 0.7 mg/L 高い値であった。流入河川(流入河川4地点平均)では4.3 mg/Lで、前年 度(4.1 mg/L)より0.2 mg/L高い値であった。
- ・湖内における経月変化については、6月及び2月を除き平均値を上回って推移した。
- ・経年変化について、湖内では平成 28 年度以降上昇傾向が続いており、令和3年度に低下した ものの、令和4年度以降再び上昇した。流入河川では平成14年度以降、横ばいからやや低下傾 向が見られている。

② TN


- ・令和5年度における年平均値は、湖内では1.1 mg/Lで、前年度(1.4 mg/L)より0.3 mg/L低い 値であった。流入河川では 1.8 mg/L で、前年度(1.9 mg/L)より 0.1 mg/L 低い値であった。
- ・湖内における経月変化については、6月を除き平均値を下回って推移した。
- ・経年変化については、湖内及び流入河川ともに長期的には低下傾向が見られている。

③ TP


- ・令和5年度における年平均値は、湖内では0.084 mg/Lで、前年度(0.083 mg/L)より0.001 mg/L 高い値であった。流入河川では 0.062 mg/L で、前年度 (0.071 mg/L) より 0.009 mg/L 低い値で あった。
- ・湖内における経月変化については、特に6月、10月、2月及び3月に平均値を下回って推移し
- 経年変化については、湖内と流入河川は平成25年度までは近い値を示していたが、平成26年 度以降は開きが見られている。湖内では平成 26 年度以降は上昇傾向が続いていたが、令和3 年度に減少して以降は横ばいで推移している。

(4) Chl.a

- ・令和 5 年度は、湖内では 66 μg/L で、前年度 (52 μg/L) より 14 μg/L 高い値であった。流入河 川では $10 \mu g/L$ で、前年度($10 \mu g/L$)と同値であった。
- ・湖内における経月変化については、3月を除き平均値を上回って推移した。
- ・経年変化については、湖内では長期的に見ると横ばい傾向であるが、平成 19 年度以降やや増 加傾向が見られている。流入河川では平成19年度まで減少傾向が続いた後は、横ばい傾向が見 られている。

湖内上層及び流入河川(全地点平均)における水質の経年変化(年度) 図2 (a) COD, (b) TN, (c) TP, (d) Chl. a

湖内上層(全地点平均)における水質の経月変化 図3 (a) COD, (b) TN, (c) TP, (d) Chl. a

(2) プランクトン(図4)

- ① 植物プランクトン(体積)
 - ・令和5年度は多くの月でこれまでと同様に珪藻類が優占する傾向が見られたが、1月はその他の藻類が優占する傾向が見られた(1月の優占種は CRYPTOPHYCEAE)。藻類全体の細胞体積(月平均)は前年度の約2.3倍に増加した。
- ② 動物プランクトン (個体数密度)
 - ・令和5年度の優占種は、4月、6月~10月及び3月はワムシ類、5月、11月~2月は繊毛虫類となった。

(3)【参考】気象(図5)

気象のデータは、牛久沼近傍のつくば(館野)のアメダスデータを用いた $^{1)}$ 。なお、平年値は 1991 年 2020 年(平成 3 年 2 年)の平均値である。

- ① 平均気温
 - ・経年変化については、変動はあるものの上昇傾向にある。令和5年度は前年度より上昇した。
 - ・経月変化については、グラフの形状は平年と大きく変わらないものの全体的に高い値となった。
- ② 降水量
 - ・ 令和 5 年度は 1361 mm で、前年度 (1265 mm) より 96 mm 多くなった。
 - ・経年変化については、変動が大きいものの長期的には横ばい傾向にある。
 - ・経月変化については、平年値と比べて、特に6月及び3月に多く、4月、7月及び10月に少なくなった。
- ③ 日照時間
 - ・令和5年度は2397時間で、前年度(2035時間)より362時間長くなった。
 - ・経年変化については、近年は多くの年で2000時間を超えて推移している。
 - ・経月変化については、2月を除き平年値を上回って推移した。

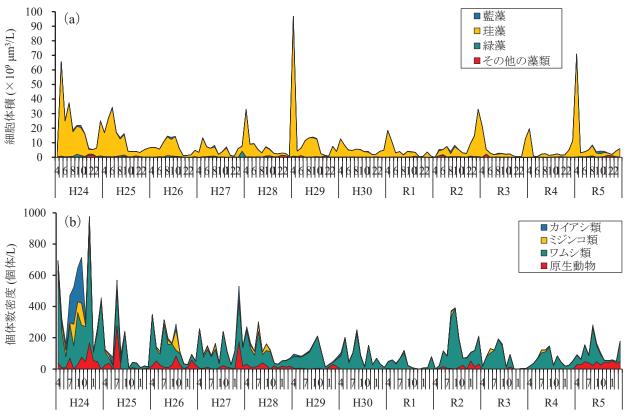


図4 湖心上層におけるプランクトンの変化

(a) 植物プランクトンの細胞体積、(b) 動物プランクトンの個体数(H29 は偶数月のみ計測)

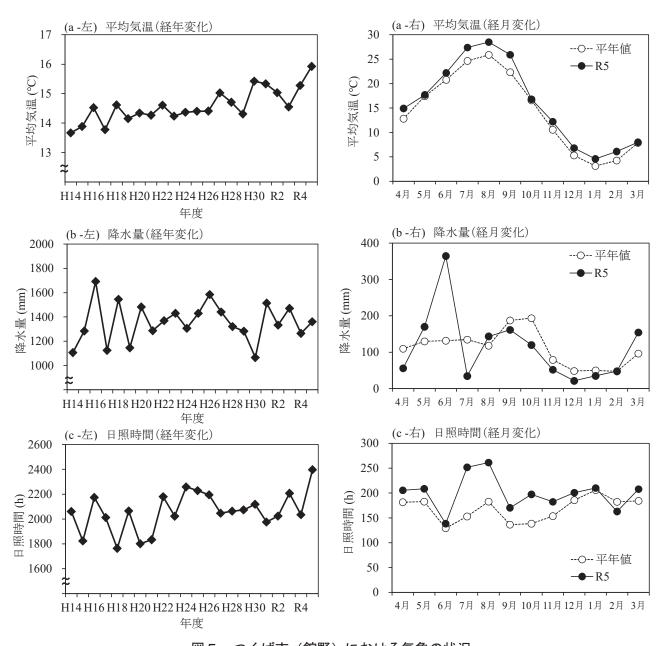


図5 つくば市(館野)における気象の状況 (a) 平均気温、(b) 降水量、(c) 日照時間 左図:経年変化、右図:経月変化

参考文献

1) 気象庁ホームページ: 気象統計情報 (つくば (館野)), http://www.data.jma.go.jp/obd/stats/etrn/

水質調査結果一覧(4月) 米

14.4 °C

気温:

探水日: 令和5年4月18日

SO ₄ ²⁻	(mg/L)	24	24	28	25	31	31	24	24	29	29	23	23	23	'	24	24	ć	SO4	(mg/L)	29	27	24	24
<u>'</u> _	(mg/L) (i	15	15	16	15	16	16	15	15	15	15	13	13	15	'	15	15	F	ַ כֿ	(mg/L) (i	13	13	17	Ξ
Ca ²⁺	(mg/L) (i	23	23	23	22	23	22	22	23	23	23	23	23	22	-	23	23	÷	Ça	(mg/L) (i	21	20	25	25
Mg ²⁺	(mg/L) (i	∞	8	8	∞	8	8	8	8	∞	∞	7	7	8	'	∞	∞	L	Mg	(mg/L) (1	7	9	6	7
±×	(mg/L) (i		1	1	-	1	1	1	1	-	-	1	1	1	'	-	1	F	¥	(mg/L) (i	1	2	1	-
Na ⁺	(mg/L) (i	∞	8	~	∞	6	6	8	8	∞	∞	7	7	8	'	∞	∞	-	Na	(mg/L) (i	9	9	13	7
Si	(mg/L)	^	< 1	2.7	1.3	0.9	6.4	< 1	> 1	4.0	5.3	3.5	2.9	< 1	-	^ 1	> 1		Si	(mg/L) (11	7.0	15	10
Chl.a	(µg/L)	52	53	83	59	150	114	45	52	146	148	80	82	43	-	51	53	-	Chl.a	(µg/L)	12	30	17	3
PO ₄ -P	(mg/L) (< 0.001	0.001	0.001	0.001	0.003	0.001	0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	: 0.001	'	: 0.001	< 0.001	-	PO4-P	(mg/L) (0.015	0.011	0.067	0.021
dTP I	(mg/L)	0.011	> 110.0	0.014	0.013	0.022	0.014	0.012	0.012	0.016	0.013	0.012	0.011	0.011 <	'	0.012 <	0.012	H	dTP I	(mg/L)	0.020	0.020	0.068	0.026
TP	(mg/L)	0.079	0.085	0.083	0.081	0.13	0.18	0.075	980.0	0.12	0.14	0.075	0.087	0.073	,	0.075	0.079		TP	(mg/L)	0.061	0.083	0.17	0.041
NO3-N	(mg/L) (i	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.11	< 0.01	< 0.01	< 0.01	0.04	0.33	0.23	< 0.01	'	< 0.01	< 0.01	ŀ	NO3-N	(mg/L) (i	1.3	1.3	2.5	1.4
NO ₂ -N	(mg/L)	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	0.01	< 0.01	'	< 0.01	< 0.01		NO2-N	(mg/L)	0.02	0.04	0.03	0.02
N-HN	(mg/L) (i	0.01	0.02	0.01	0.01	0.02	0.04	0.01	0.01	0.01	0.03	0.01	0.02	0.01	•	0.01	0.01		Z-14N	(mg/L) (i	0.14	0.19	0.18	0.10
NTD	(mg/L)	0.29	0.30	0.29	0.30	0.37	0.39	0.29	0.32	0.27	0.33	0.61	0.49	0.29	-	0.31	0.31	H	NTP	(mg/L) (1.5	1.6	2.7	1.5
Z	(mg/L) (0.75	0.74	0.78	0.75	1.3	1.3	69.0	0.73	92.0	0.93	0.79	0.73	0.45	-	09.0	09.0		Z	(mg/L)	1.7	1.8	3.0	1.6
DOC	(mg/L) (3.1	3.0	3.0	3.1	2.8	2.6	3.1	3.1	2.7	2.5	2.6	2.6	3.2	'	3.1	3.1			(mg/L) (1.6	2.4	1.5	1.7
TOC	(mg/L)	5.7	5.5	6.2	5.4	6.4	6.3	6.1	6.4	6.3	4.9	4.7	4.7	5.4	'	5.7	5.3	-	TOC	(mg/L)	2.1	3.5	2.4	1.9
dcop	(mg/L)	4.9	4.9	4.7	4.9	4.5	4.1	4.8	5.1	4.4	4.4	4.3	4.6	5.4	'	5.2	5.1		dCOD	(mg/L)	3.1	4.3	2.9	3.2
COD	(mg/L)	9.7	6.7	10	9.4	12	14	6.6	11	11	9.2	8.2	8.6	0.6	,	9.5	9.5		COD	(mg/L)	3.9	0.9	5.3	3.4
SS	(mg/L)	20	25	23	22	31	58	17	21	25	33	19	24	20		22	24		SS	(mg/L)	11	15	24	1
DO	(mg/L)	9.6	8.5	12	8.7	12	8.7	11	6.7	13	6.6	13	12	6.6	-	10	8.9		DO	(mg/L)	6.7	8.6	10	9.1
EC	(mS/m)	25.2	25.2	25.0	25.3	25.4	25.7	24.8	25.1	25.0	25.4	25.7	24.5	25.4		25.3	25.4		EC	(mS/m)	25.1	23.5	30.1	25.8
Ηd	(-)	8.8	8.6	8.8	8.8	8.8	8.7	8.9	8.8	9.1	9.1	8.4	8.7	8.4	'	9.8	8.5		ЬH	(-)	7.9	8.3	8.0	8.3
平	(°C)	18.4	17.8	18.5	17.5	19.0	17.5	18.5	17.5	18.5	18.0	19.0	18.0	19.0	'	19.0	18.0		光調	(°C)	15.5	18.0	17.0	17.0
透明度	(m)	9.0		0.5		0.4		9.0		0.5		9.0		9.0	1	0.5		1	透視度	(cm)	48	31	25	> 50
光	(m)	1.8		2.0		2.3		1.7		2.2		1.8		1.6	-	2.6		-	光	(m)	6.0	8.0	0.2	1.3
聖士		10:19		11:05		11:20		11:41		12:02		10:00		10:40		10:50		1	順	(m ³ /s)	0.03	0.11	0.04	0.00
探水層		上層	圖上	四山	四十	四日	屋上	上層	上層	四	脚	上層	屋上	屋田	上層	壓	圏上	1	聖世		14:30	14:00	14:15	13:37
地点名		L1	LI	1.2	1.2	L3	Г3	1.4	L4	LS	LS	9T	9Т	L7	L7	F8	F8		地点名		R1	R2	R3	R4
種類		湖沼	湖沼	湖沼	湖沼	湖沼	潮沼	類紀	湖沼	瀬沼	湖沼	湖沼	湖沼	湖沼	湖沼	瀬沼	湖沼	1	種類		流入河川	第入河川	第入河川	流入河川

(5月) 水質調査結果一覧 米2

17.2 °C

探水日: 令和5年5月12日

																		_					
SO_4^{2-}	(mg/L)	23	23	30	27	29	29	22	24	26	26	21	22	22		25	25	2,5	oo4	34	33	28	26
CĹ	(mg/L)	15	15	20	17	19	19	14	16	16	16	14	14	15	-	16	16	ť	CI (mo/I)	20	20	19	17
Ca ²⁺	(mg/L)	21	21	22	21	20	21	21	22	19	19	17	18	21	-	22	22	5+	Ca (mo/L)	23	22	21	19
Mg ²⁺	(mg/L)	7	7	7	9	9	9	9	7	5	5	5	5	9	-	7	7	2+			9	7	9
$\mathbf{K}^{\scriptscriptstyle +}$	(mg/L)	1	2	2	2	2	2	1	2	2	2	2	2	1	-	1	2		Mo/L)	_	3	2	2
Na +	(mg/L)	7	7	6	8	∞	6	7	∞	7	7	7	7	7	-	8	8	+	Na (mo/L)		10	11	10
Si	(mg/L)	5.1	4.9	5.8	5.7	6.1	6.2	5.0	5.4	7.3	7.4	7.5	7.7	5.2	-	4.9	4.9	ë			7.7	6	10
Chl.a	(hg/L)	99	99	49	62	28	39	72	70	77	35	41	24	29	-	52	58	-			18	6	4
PO4-P	(mg/L)	< 0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.003	0.001	-	< 0.001	0.001	6		+-	0.008	0.016	0.022
dTP	(mg/L)	0.013	0.013	0.016	0.016	0.018	0.015	0.015	0.013	0.017	0.011	0.016	0.012	0.013	-	0.013	0.014	u.F.	_		0.019	0.026	0.030
TP	(mg/L)	0.079	0.085	0.088	0.091	0.083	0.12	0.087	0.12	0.095	0.095	0.084	0.091	0.095	-	0.084	0.102	Ē	_		0.087	0.11	0.068
NO3-N	(mg/L)	0.02	0.02	0.08	0.05	0.33	0.32	< 0.01	< 0.01	0.49	0.50	0.89	0.92	0.04	'	< 0.01	< 0.01	N. O.N.			1.1	96.0	1.3
NO2-N	(mg/L)	< 0.01	< 0.01	0.01	0.01	0.02	0.01	< 0.01	< 0.01	0.02	0.02	0.02	0.02	< 0.01	-	< 0.01	< 0.01	N. O.N.			0.02	0.01	0.01
N-HN	(mg/L)	0.03	0.03	0.04	0.04	0.04	0.08	0.02	0.05	0.02	0.11	0.14	0.20	0.03	'	0.02	0.02	N. III.			0.12	0.08	90.0
dTN]	(mg/L)	0.33	0.33	0.46	0.42	0.67	0.72	0.33	0.35	0.80	0.86	1.3	1.4	0.33	-	0.28	0.30	N.L.		+-	1.5	1.3	1.6
NI	(mg/L)	0.78	98.0	0.94	0.97	1.2	1.2	0.91	0.98	1.3	1.2	1.6	1.6	0.80	-	89.0	0.74	Ä	VII		1.7	1.4	1.6
DOC	(mg/L)	2.7	2.7	3.2	3.1	3.1	3.0	3.0	2.9	2.6	2.5	2.6	2.6	2.7	-	2.8	2.8	2	_	-	2.7	2.7	2.4
TOC	(mg/L)	5.4	5.2	5.5	5.4	4.8	5.1	5.8	5.6	4.7	3.5	3.8	3.4	5.1	'	5.3	5.5	Ş	_		3.5	3.4	2.7
QOOP	(mg/L)	4.3	4.3	4.9	4.9	5.0	4.6	4.7	4.7	4.2	4.1	4.5	4.4	4.5	-	4.9	4.7	200		_	4.6	4.6	4.1
COD	(mg/L)	8.9	9.4	9.5	9.4	8.3	9.5	9.6	11	8.2	7.1	6.7	6.7	9.0	-	8.9	9.5	5	(T)om)	8.4	5.9	6.9	4.5
SS	(mg/L)	25	28	23	26	19	39	24	40	21	26	16	22	28	-	24	30	5	SS (Tom)		16	31	6
DO	(mg/L)	9.4	9.2	9.6	9.2	9.6	7.1	11	8.2	11	8.9	8.4	7.3	8.7	-	10	8.5	2	CI)om)	-	8.7	8.2	9.5
EC	mS/m)	22.3	22.5	25.2	25.1	23.8	23.7	23.6	23.6	21.8	21.5	19.9	20.4	22.4	-	23.7	24.1	5	í.		24.8	24.6	24.4
Hd	(-)	7.4	8.0	8.0	8.0	8.0	7.8	7.9	8.0	8.2	8.0	6.9	6.9	8.1	-	8.1	8.1	17	E 3	7.7	7.8	9.7	7.9
水温	(°C)	19.4	19.3	20.2	19.8	19.8	19.4	20.5	20.0	21.1	19.8	20.7	20.0	19.0	'	19.4	19.3	E 2		20.6	20.8	23.4	20.6
透明度	(m)	0.5		0.5		9.0		0.5		9.0		9.0		0.5		0.5		世界崇	(cm)	4	31	34	> 50
大深 ,	(m)	2.0		2.0		2.5		1.8		2.3		1.9		1.7		2.7		易辛		1.2	8.0	0.5	1.5
時間		10:14		10:50		11:00		11:20		11:35		10:00		10:30		10:40		uļ 19	m. ≡ (m ³ /c)	0.87	0.45	0.23	0.65
採水層		上層	圖上	圖工	上層	壓斗	塵	圏コ	圖上	墨田	圖	屋田	上層	圖工	上層	圖	四個	##	Ē.	14:24	13:42	14:00	13:17
地点名		L1	L1	L2	L2 -	L3	L3	7.	. 47	L5		- 9T	- 9T	L7	. L7	- 8T	- 8T	사 나 사	見り	R1	R2	R3	R4
種類		別 別級	1 忠榮	類紹 工	期 別 別	瀬沼 1	類器 I	類器 工	類器 工	類紹 工	対紹 1	類招 工	湖沼 1	類紹 工	期 別 別	別 別 別 別	A 品牌	2000年		第入河川 1	第入河川 F	第入河川 F	流入河川 1
		蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	蹇	L		援	援	援	援

(6月) 水質調査結果一覧 表3

22.6 °C

気温:

探水日: 令和5年6月20日

	<u></u>		20	21	22	26	22	19	22	29	29	24	24	20	,	21	21	Γ.		ء ا	31	30	23	25
SO_4^2	(mg/L)																	5,		(mg/L)				
CĹ	(mg/L)	8	6	10	10	12	11	6	10	13	13	12	12	6		6	6	ť	ָל ד	(mg/L)	14	15	14	12
Ca^{2+}	(mg/L)	17	19	19	20	23	21	19	20	24	24	22	22	19		19	19	÷	3 [(mg/L)	25	22	24	21
Mg ²⁺	(mg/L)	5	9	9	9	7	7	9	9	∞	8	7	7	9		9	9	,t 2+		(mg/L) (6	∞	6	7
K ⁺	(mg/L) (i	2	3	3	3	3	3	3	3	3	3	3	3	3		3	3	H		(mg/L) (1	3	3	2	33
Na +	(mg/L) (n	7	7	∞	∞	10	6	7	8	11	11	12	12	8		∞	8	+		(mg/L) (n	12	11	13	12
Si	(mg/L) (n	8.0	8.0	7.3	7.3	7.3	7.6	8.4	8.3	8.6	10	10	10	8.2		7.4	7.5			(mg/L) (n	11	7.2	11	10
ChLa	(m) (m)	55	40	99	53	72	48	55	49	78	39	49	25	20		\$	43	- 1		(µg/L) (m	9	41	9	4
PO4-P C	(mg/L) (µ	0.001	0.002	0.002	0.001	0.001	0.003	0.001	0.002	0.003	0.003	0.005	0.005	0.002		0.001	0.002	g		(mg/L) (μ	0.012	0.004	0.011	0.019
ATP PC	(mg/L) (m	0.011 0	0.009	0.014 0	0.011 0	0.013 0	0.010	0.011 0	0.009	0.015 0	0.011 0	0.015 0	0.012 0	0.009		0.010	0.009	Arb DC		(mg/L) (m	0.018 0	0.013 0	0.015 0	0.024 0
		0.074 0	0.093 0	0.083 0	0.074 0	0.080	0.079	0.078 0	0.093 0	0.088 0	0.085 0	0.078 0	0.068 0	0.068 0		0.074 0	0.099 0	-		_	0.040 0	0.063 0	0.063 0	0.042 0
-N TP	L) (mg/L)	0.28 0.	0.26 0.	0.31 0.	0.42 0.	0.60	0.61 0.	0.38 0.	0.32 0.	0.93	0.95	0.90	0.93	0.29		0.30	0.31 0.	o T		L) (mg/L)	1.4 0.	1.5 0.	1.6 0.	1.1
N NO3-N	(mg/L)	0.01	0.01	0.01	0.01	0.02	0.02 0.	0.02	0.01	0.02	0.02	0.01	0.01	0.01		0.01	0.01 0.	N.O.N		(mg/L)		0.01	0.02	
NO2-N	(mg/L)																	N.O.N.		(mg/L)	13 0.01			0.02 < 0.01
N-HN	(mg/L)	1 0.02	2 0.04	0.02	9 0.03	0.04	1 0.07	4 0.04	8 0.05	2 0.03	2 0.03	1 0.01	2 0.04	4 0.02		6 0.02	9 0.07	N.H.N		(mg/L)	6 0.03	7 0.01	7 0.05	
NTb	(mg/L)	0.51	0.52	09.0	69:0	06:0	0.91	0.64	0.58	1.2	1.2	1.1	1.2	0.54		0.56	0.59	Ţ		(mg/L)	1.6	1.7	1.7	1.3
NI	(mg/L)	0.91	0.93	1.08	1.12	1.3	1.2	1.1	1.0	1.6	1.5	1.4	1.3	0.75	·	0.72	0.78	Ē	NII (E)	(mg/L)	1.6	1.9	1.8	1.4
DOC	(mg/L)	2.7	2.5	3.0	2.8	2.9	2.7	2.7	2.7	2.6	2.5	2.5	2.4	2.6		2.7	2.5	5		(mg/L)	2.3	2.6	1.7	2.1
TOC	(mg/L)	4.5	4.2	5.5	4.8	4.5	4.0	4.3	4.3	4.3	3.6	3.5	3.0	4.0		4.2	4.1	Į.	3	(mg/L)	2.5	3.4	2.1	2.2
COOP	(mg/L)	4.1	4.0	4.5	4.3	4.6	4.2	4.1	4.3	4.3	4.2	4.1	4.1	4.4		4.4	4.3	000		(mg/L)	4.1	4.3	3.0	3.6
COD	(mg/L)	7.6	8.1	8.5	7.5	7.8	7.7	8.0	8.5	7.6	9.9	6.5	5.7	7.2		7.6	8.2	5	000	(mg/L)	4.3	6.7	4.4	4.0
SS	(mg/L)	19	29	19	17	16	20	19	30	15	18	12	12	16		20	34	00	60	(mg/L)	9	15	18	S
DO	(mg/L)	7.3	5.5	9.2	8.2	8.6	7.6	8.1	6.9	10	8.8	8.9	7.5	7.5		8.9	6.2	2		(mg/L) (8.7	12	8.4	10
EC	(m/Sm)	18.7	18.3	19.1	20.2	22.5	22.8	20.2	19.5	24.0	24.6	23.3	22.8	18.6		18.7	18.7	C _Q		(mS/m)	25.1	23.6	25.1	22.8
Hd	(-)	7.7	7.7	7.6	7.7	7.7	7.7	7.6	7.6	7.6	7.6	7.4	7.4	7.6		7.8	7.7	D _s		<u>-</u>	7.7	8.2	9.7	7.8
水温	(o,C)	25.4	25.2	25.7	25.4	25.6	25.3	25.7	25.1	25.9	25.4	25.0	24.7	25.5		25.5	25.0	# 1	I	<u> </u>	24.5	25.3	24.0	24.5
透明度	(m)	09.0		0.50		9.0		9.0		9.0		0.7		9.0		9.0		世界州		(cm)	> 50	37	40	> 50
水深透	(m)	1.9		1.9		2.2		1.7		2.3		1.8		1.6		2.6		男子		(m)	1.1	8.0	0.5	1.4
時間		10:12		10:56		11:09		11:30		11:49		9:57		10:30		10:39		ılı H		(m_/s)	1.93	1.25	0.36	0.5
探水層 服		下層	下層	上面	下層	日屋	上層	下層	上層	上層	下層	上層	上層	下層	上層	下層	下層	2 1841		1)	14:44	14:25	13:57	13:24
地点名 探		긔	¥`		,									Ť				1 4						
		L1	L1	1.2	1.2	L3	L3	1.4	174	LS	LS	9T	9T	L7	L7	1.8	L8				可川 R1	न्।।। R2	न्।। R3	可川 R4
種類		強犯	湖沿	強犯	類況	類紀	強犯	遊船	強紹	強犯	類紹	湖沼	遊船	類紹	強犯	強犯	強紹	田泰 健作	圃		流入河川	流入河川	流入河川	第入河川

(7月) 水質調査結果一覧 表4

30.6 °C

気温:

探水日: 令和5年7月11日

						_	_							_									_	
SO_4^{2-}	(mg/L)	23	22	23	23	20	20	22	23	25	26	21	21	19		22	22	•	$SO_4^{\frac{2}{2}}$	(mg/L)	25	26	20	23
Cľ	(mg/L)	13	13	14	14	12	12	12	13	13	14	13	13	11		13	13		Ċ	(mg/L)	13	15	14	13
Ca ²⁺	(mg/L)	21	21	21	22	20	20	21	21	22	23	20	20	18		21	21		Ca ²⁺	(mg/L)	21	21	21	21
Mg ²⁺	(mg/L)	9	9	9	9	9	9	9	9	7	7	9	9	5	-	9	9		Mg ²⁺	(mg/L)	7	7	7	9
\mathbf{K}^{+}	(mg/L) (2	2	2	2	2	2	2	2	2	2	2	2	2		2	2	-	<u>*</u> ×	(mg/L)	2	2	1	2
Na	(mg/L) (r	10	10	10	10	6	6	10	10	10	11	11	12	6	-	6	10	-	Na ⁺	(mg/L) (r	111	11	12	12
Si	(mg/L) (8.3	8.2	7.1	7.4	7.4	7.7	9.8	9.1	9.5	8.6	9.3	6.6	8.3	-	7.8	8.3	-	Si	(mg/L) (13	8.9	11	11
Chl.a	$(\mu g/L)$	50	65	75	59	73	54	69	17	113	62	80	65	52		73	69		Chl.a	(µg/L)	23	44	10	5
PO ₄ -P	(mg/L)	0.002	0.002	0.001	0.002	0.001	0.002	0.003	0.001	900.0	0.003	0.003	0.002	0.002		0.001	0.002	-	PO4-P	(mg/L)	0.000	0.003	0.011	0.019
dTb	(mg/L) (0.014	0.013	0.016	0.014	0.017	0.014	0.017	0.013	0.024	0.016	0.020	0.014	0.015		0.018	0.016	lŀ	dTP	(mg/L)	0.017	0.014	0.019	0.029
TP	(mg/L) (0.084	0.094	0.089	0.12	0.091	0.17	0.093	0.091	0.12	0.11	0.12	0.11	0.088	-	0.085	0.11	-	TP	(mg/L) (0.051	0.069	0.076	0.047
NO3-N	(mg/L)	< 0.01	< 0.01	0.07	0.08	0.12	0.19	< 0.01	0.02	0.20	0.32	0.15	0.23	< 0.01		< 0.01	0.02	Ī	NO3-N	(mg/L)	96.0	0.77	0.73	0.71
NO2-N	(mg/L)	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	0.02	0.02	0.01	0.01	< 0.01	-	< 0.01	< 0.01	f	NO2-N	(mg/L)	0.01	0.01	0.01	< 0.01
NH4-N	(mg/L)	0.01	0.02	0.02	0.07	0.02	0.16	0.01	0.03	0.02	0.05	0.03	0.05	0.01		0.01	0.13	l ⊢	NH4-N	(mg/L)	0.01	0.01	0.05	0.02
NTb	(mg/L)	0.31	0.31	0.42	0.48	0.50	99.0	0.34	0.35	09.0	0.67	0.52	0.57	0.31		0.32	0.45		NTb	(mg/L)	1.2	1.2	1.0	1.0
NI	(mg/L)	0.74	0.81	0.92	1.0	1.0	1.3	0.91	0.87	1.2	0.98	1.2	1.0	0.74	-	09.0	0.71	ľ	Z	(mg/L)	1.4	1.5	1.2	1.1
DOC	(mg/L)	3.4	3.3	3.4	3.3	3.5	3.2	3.5	3.2	3.7	2.9	3.2	2.8	3.4		3.3	3.2	Ī	DOC	(mg/L)	2.3	3.3	2.5	2.4
TOC	(mg/L)	5.8	5.2	5.5	4.9	5.6	4.8	5.8	5.8	6.9	4.6	5.7	4.3	5.9		5.7	4.7		TOC	(mg/L)	2.8	4.2	3.0	2.5
COOD	(mg/L)	5.2	4.9	5.2	5.1	5.4	4.9	5.4	4.9	6.1	5.0	4.8	4.2	4.9		4.9	4.8		doop	(mg/L)	3.5	5.0	4.2	3.6
COD	(mg/L)	9.3	8.7	9.3	9.6	8.9	Ξ	10	9.3	11	7.9	9.3	8.2	9.3		9.6	8.9		COD	(mg/L)	5.0	7.8	5.9	4.3
SS	(mg/L)	18	24	16	32	15	49	19	26	19	24	29	26	21		23	32		SS	(mg/L)	8	13	18	3
DO	(mg/L)	10	6.5	11	5.1	11	4.9	11	8.6	13	7.9	10	8.1	6.6		8.6	4.2		00	(mg/L)	10	14	8.6	8.7
EC	(mS/m)	22.6	22.5	23.0	23.1	23.4	23.8	22.5	22.9	23.7	24.5	11.5	23.3	22.3	-	22.5	22.8		EC	(mS/m)	26.0	25.1	28.7	23.6
Hd	(-)	8.1	8.0	7.9	7.9	8.1	8.0	8.3	8.4	8.9	8.7	7.8	7.8	8.2		8.6	8.2		μd	·	8.1	8.8	8.2	8.1
水温	(°C)	31.4	29.8	30.6	30.0	31.8	30.0	32.6	31.0	32.5	30.7	31.5	30.3	32.0		29.8	28.9		票	(3C)	30.6	32.0	33.6	30.2
透明度	(m)	0.5		9.0		9.0		0.5		0.5		0.5		9.0		9.0			透視度	(cm)	48	37	49	> 50
大深	(m)	1.8		1.9		2.2		1.7		2.3		1.8		1.5		2.6			光光	(m)	1.1	8.0	0.4	1.4
聖士		10:15		10:51		11:03		11:22		11:41		10:00		10:30		10:40			崩	(m ³ /s)	1.15	9.0	0.32	0.29
採水層		上層	四十	上層	四十	圖出	四十	四二	下層	四二二	圖上	上層	四十	屋子	四上	圖出	上層		重量		14:47	14:00	14:12	13:17
地点名		L1	L1	1.2	L2	L3	L3	47	L4	LS	LS	Te	9T	L7	L7	F8	F8		地点名		R1	R2	R3	R4
種類		湖沼	瀬沼	湖沼	湖沼	湖沼	湖沼	湖沼	潮沼	瀬沼	湖沼	湖沼	瀬沼	湖沼	湖沼	湖沼	湖沼		種類		第入河川	流入河川	流入河川	第入河川

水質調査結果一覧(8月) Ŋ 表

31.6 °C

河道:

探水日: 令和5年8月8日

	_	0	20	20	17	19	19	23	22	24	24	15	41	19	-	20	20	Г		_	25	22	22	16
SO ₄ ²⁻	(mg/L)	20																•	SO4 2-	(mg/L)				
ď	(mg/L)	15	15	15	13	16	16	16	15	17	17	11	10	14	Ċ	15	15		Ö,	(mg/L)	17	15	17	12
Ca ²⁺	(mg/L)	24	24	25	23	25	25	25	25	25	25	18	17	22	-	24	24		Ca ²⁺	(mg/L)	25	23	26	19
Mg ²⁺	(mg/L)	7	7	7	7	7	7	7	7	7	7	5	4	9		7	7		Mg 5+	(mg/L)	7	7	8	5
$\mathbf{K}_{^{+}}$	(mg/L)	3	3	2	2	2	2	3	2	2	3	2	2	2	-	2	2		<u>\</u>	(mg/L)	3	2	2	2
Na	(mg/L)	13	13	13	12	13	13	14	13	14	14	10	6	13	-	13	13		Na +	(mg/L)	15	13	17	13
Si	(mg/L)	4.7	4.7	5.0	5.1	6.2	6.7	4.4	4.3	8.4	8.2	7.0	7.4	5.4	-	4.8	5.0		S.	(mg/L)	12	10	13	11
Chl.a	(µg/L)	108	92	93	16	117	93	66	101	133	93	19	28	94	-	95	68	ľ	Chl.a	(µg/L)	10	19	7	9
PO4-P	(mg/L)	0.004	0.002	0.003	0.003	0.008	900.0	0.003	0.002	0.011	0.012	0.002	900.0	0.001	-	0.003	0.001	ľ	PO4-P	(mg/L)	0.021	0.002	0.031	0.028
dTP	(mg/L)	0.022	0.017	0.021	0.018	0.029	0.022	0.022	0.019	0.030	0.027	0.018	0.017	0.017	-	0.022	0.017		dTP	(mg/L)	0.032	0.017	0.038	0.038
TP	(mg/L)	0.12	0.13	0.13	0.14	0.15	0.21	0.12	0.12	0.15	0.16	0.098	0.11	0.14	-	0.101	0.128		TP	(mg/L)	0.058	0.069	0.090	090.0
NO3-N	(mg/L)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.43	0.54	< 0.01	-	< 0.01	< 0.01	ľ	NO3-N	(mg/L)	0.46	0.32	0.79	0.44
NO2-N	(mg/L)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01	-	< 0.01	< 0.01	- ⊢	NO2-N	(mg/L)	0.01	0.01	0.01	< 0.01
NH4-N	(mg/L)	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.11	0.05	0.15	0.02	-	0.01	0.02		N-HN	(mg/L)	0.03	0.01	90.0	0.02
NLP	(mg/L)	0.37	0.32	0.38	0.36	0.39	0.38	0.37	0.36	0.35	0.48	0.77	0.94	0.33	-	0.36	0.33	F	NIP	(mg/L)	0.74	0.63	1.0	0.70
NT	(mg/L)	0.76	0.78	0.75	0.79	08.0	0.97	0.81	0.81	0.78	0.93	1.0	1.2	0.79	-	0.82	0.84	ľ	Z	(mg/L)	0.75	0.79	1.2	0.72
DOC	(mg/L)	4.2	4.1	4.4	4.2	4.5	4.2	4.3	4.3	3.8	3.6	3.3	3.1	3.9	-	4.3	4.1	ŀ	D0C	(mg/L)	2.9	3.5	2.6	2.9
TOC	(mg/L)	7.5	6.3	7.2	5.8	6.9	6.2	7.8	8.9	5.8	5.3	4.2	4.1	5.5	-	6.9	5.9	l	TOC	(mg/L) (3.4	4.7	3.2	3.1
dcob	(mg/L)	5.9	0.9	6.3	6.2	6.4	5.9	0.9	6.2	5.6	5.4	5.4	5.0	6.2	-	6.4	6.4	F	dcop	(mg/L) (4.8	5.5	4.3	4.9
COD	(mg/L)	11	=	Ξ	11	12	13	12	12	10	8.6	7.9	7.8	11	-	11.5	10.8	ŀ	COD	(mg/L)	5.3	8.2	5.7	5.1
SS	(mg/L)	29	36	28	34	27	48	28	34	24	35	16	27	35	-	27	36	ľ	SS	(mg/L)	∞	13	20	9
DO	(mg/L)	8.2	5.1	9.2	3.9	7.8	3.8	Ξ	6.7	10	4.1	6.5	4.1	5.2	-	9.1	4.8	ľ	90	(mg/L)	10	12	7.2	8.0
EC	(mS/m)	23.8	24.4	25.1	25.1	25.1	25.2	24.9	24.8	25.5	25.7	20.2	18.0	23.2	-	24.0	24.3	ŀ	EC	(mS/m)	26.0	23.0	26.9	23.3
Hd	<u>·</u>	9.7	8.0	7.9	7.9	8.0	7.9	8.0	8.0	8.1	8.1	7.4	7.3	8.0	-	8.1	8.1	ŀ	Hd	<u>·</u>	7.8	8.2	7.7	8.0
型	(°C)	31.9	31.2	32.1	31.3	31.8	31.1	32.3	31.4	32.4	31.4	30.9	29.9	30.9	'	31.6	31.0		平 題	(C)	30.1	31.3	29.6	29.5
透明度	(m)	0.45		0.40		0.45		0.45		0.50		0.55		0.45		0.40		-	透視度	(cm)	> 50	44	> 50	> 50
水深 浜	(m)	1.7		1.7		1.9		1.5		2.0		1.6		1.4		2.3		- 1	光缆	(m)	1.1	6.0	0.4	1.3
時間		10:14		10:50		11:05		11:23		11:40		10:00		10:30		10:40		ŀ	端	(m ³ /s)	1.26	96.0	0.41	89.0
探水層		四四日	四上	四山	四上	圖口	四	四田口	上層	下層	四上	圖山	四上	上層	屋上	下層	四		計量	_	14:20	13:40	14:00	13:11
地点名		L1 1	L1	L2 I	L2 T	L3 I	L3 T	L4 F	L4	L5 L	L5 T	F 97	F6 T	L7 1	L7 T	T-8	L8	f	地点名		R1	R2	R3	R4
種類																		f	種類		第入河川 R	流入河川 R	流入河川 R	流入河川 R
		湖沿	類別	斑岩	強犯	強紹	湖沿	遊船	強犯	湖沿	類別	強犯	遊紹	湖沿	湖沿	湖沼	強紹	L			润	润	摇	掘

(日6) 水質調査結果一覧 9 表

27.4 °C

採水日: 令和5年9月6日

2-	L)	21	21	22	22	23	23	22	22	26	26	16	15	20		20	20	ΙΓ	-7 .	Û	29	21	24	20
SO ₄ ²⁻	(mg/L)	14	14	91	15	16	16	15	15	14	41	10	10	13		14	14		SO ₄	(mg/L)			14	
Cĺ	(mg/L)			Ť	17														ŭ	(mg/L)	12	11		12
Ca^{2+}	(mg/L)	20	20	21	21	22	22	20	20	23	23	16	16	19		19	19		$Ca^{\frac{2}{+}}$	(mg/L)	23	18	24	20
Mg ²⁺	(mg/L)	9	9	7	9	7	7	9	9	7	7	5	5	9		9	9		Mg ²⁺	(mg/L)	7	5	8	9
$\mathbf{K}^{\scriptscriptstyle{+}}$	(mg/L)	2	2	2	2	3	3	2	2	2	2	2	2	2		2	2		<u>\</u>	(mg/L)	2	3	2	2
Na ⁺	(mg/L)	11	=	12	12	13	12	11	11	11	11	8	8	10		11	11	Ī	Na	(mg/L)	10	∞	16	10
Si	(mg/L) (3.9	3.9	4.5	4.6	8.4	8.7	3.7	3.7	6.7	7.5	0.9	6.1	4.0		3.9	3.9	-	Si	(mg/L)	13	7.9	14	10
Chl.a	(μg/L) (85	06	98	84	118	66	86	100	158	121	109	95	109		106	103	-	Chl.a	(µg/L)	19	26	4	3
PO ₄ -P	(mg/L) (0.003	0.003	0.004	0.004	90000	900.0	0.003	0.002	0.013	0.014	0.005	0.005	0.002		0.002	0.002	-	PO ₄ -P	(mg/L)	0.017	0.012	0.053	0.026
dTP F	(mg/L) (i	0.021	0.022	0.021	0.021	0.024	0.023	0.024	0.025	0.036	0.033	0.024	0.023	0.022		0.023	0.021	-	dTP F	(Img/L)	0.027	0.025	0.059	0.038
TP	(mg/L) (1	0.11	0.11	0.12	0.16	0.15	0.18	0.12	0.13	0.19	0.18	0.12	0.13	0.11		0.11	0.14	-	TP	(mg/L) (1	0.056	0.083	0.11	0.054
NO3-N	(mg/L) (1	< 0.01	< 0.01	< 0.01	< 0.01	0.11	0.16	< 0.01	< 0.01	< 0.01	0.04	0.16	0.18	< 0.01		< 0.01	< 0.01	-	NO3-N	(mg/L) (i	0.87	0.84	1.7	06.0
NO2-N	(mg/L) (r	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01		< 0.01	< 0.01	-	NO2-N	(mg/L) (r	0.01	0.03	0.01	0.01
NH4-N	(mg/L) (r	0.01	0.01	0.01	0.01	0.04	0.07	0.01	0.01	0.01	0.03	0.02	0.03	0.01		0.01	0.01	-	NH4-N	(mg/L) (r	0.05	0.17	0.04	0.03
N NIP	(mg/L) (n	0.37	0.38	0.34	0.32	0.46	0.54	0.39	0.40	0.36	0.36	0.51	0.51	0.39		0.42	0.38	-	N NTb	(mg/L) (n	1.2	1.4	1.8	1.3
P NL	(mg/L) (n	0.85	0.86	0.59	09.0	0.79	1.0	0.80	0.90	0.89	0.85	0.79	0.89	0.84		0.83	0.89	-	P NL	(mg/L) (n	1.4	1.6	1.9	1.3
DOC	(mg/L) (m	3.9	3.9	3.8	3.7	3.4	3.4	4.2	4.1	3.6	3.3	3.6	3.3	4.0		4.1	4.0	-	DOC	(mg/L) (m	2.7	3.4	2.3	2.6
TOC D	(mg/L) (m	6.4	6.9	6.2	6.3	5.2	5.4	7.2	7.4	0.9	5.6	4.9	4.5	6.7		9.9	6.1	-	TOC D	(mg/L) (m	2.8	3.9	2.8	2.9
4COD T	(mg/L) (m	6.1	5.8	5.5	5.5	5.3	5.0	5.9	0.9	5.3	5.0	5.3	5.0	5.8		0.9	5.8	-	dCOD T	(mg/L) (m	3.9	5.2	3.6	3.9
COD dC	(mg/L) (m	11	12	=	12	11	13	12	13	11	=	9.3	0.6	12		11	12	-	COD dC	(mg/L) (m	4.9	7.0	5.1	4.3
SS C	(mg/L) (m	30	33	26	44	30	50	31	39	30	42	20	23	33		28	43	-	SS	(mg/L) (m	7	14	18	r.
DO s	(mg/L) (m	6.7	6.3	7.2	5.7	6.4	5.7	7.3	7.0	7.9	9.9	0.9	5.7	7.1		7.5	5.8	-	DO	(mg/L) (m	9.8	8.9	8.1	8.0
EC [(mS/m) (m	21.5	22.0	23.2	23.3	24.5	24.7	22.5	22.4	23.9	23.9	17.6	17.5	20.9		21.5	21.8	-	EC L	(m/Sm)	23.3	19.6	27.1	22.1
Hd Hd	(-) (m)	7.9	8.2	8.0	7.8	7.9	7.8	8.1	8.3	9.8	8.4	6.9	7.1	8.3		8.4	8.2	-	PH I	(m)	7.8	7.7	7.5	7.8
水温 p	(c) (29.4	29.5	30.0	29.9	30.0	29.8	29.9	29.9	30.2	30.0	29.5	29.5	29.5		29.5	29.5	-	水温 b	(Q)	28.6	28.6	28.9	28.0
歩	(m)	0.5		0.5		0.5		0.5		0.5	_	0.5		0.5		0.5			宇文	(cm)	> 50	36	> 50	> 50
水深 透明	(m) (r	1.6		1.6		1.7		1.4		1.9		1.5		1.3		2.2			水深 透視	(m) (c.	8.0	9.0	0.3	1.2
時間 水	(r	10:14	_	10:50		11:02		11.21		11:40	_	85:6		10:28		10:37		-	消量	(m ³ /s) (n	0.36	0.34	0.19	0.26
			p.p.		8.00-		pm-		pm-		p.p.		pm-		pm-		p.m-		E	(m)	14:25	13:45 (14:09	13:19
点名 探水層		四四四	严	그	四上	四日	四	四	四	四二	严	四山	上層	上層	四	国山	上		盐		1	L	1	_
型		LI	17	12	17	L3	L3	47	17	L5	LS	97	97	L7	L7	1.8	1.8		地点名		R1	 	11 R3	R4
種類		湖沼	強紹	湖沿	湖沿	湖沼	湖沼	湖沼	湖沼	湖沿	強紹	湖沼	湖沼	湖沼	湖沼	湖沼	湖沼		種類		流入河川	流入河川	流入河川	前入河川

水質調査結果一覧(10月) 表7

19.9 °C

探水日: 令和5年10月18日

SO ₄ ²⁻	(mg/L)	27	29	37	37	37	37	26	26	27	24	17	17	25		26	27		SO ₄ ²⁻	(mg/L)	47	55	36	3.7
CĬ	(mg/L) (13	13	16	16	14	14	12	12	10	6	∞	8	12		13	13	İ	Ċ	(mg/L) (17	20	16	14
Ca ²⁺	(mg/L)	20	20	24	24	23	23	19	19	19	17	15	15	19		19	20	-	Ca^{2+}	(mg/L)	27	28	30	2.4
Mg ²⁺	(mg/L)	9	9	7	7	7	7	9	9	5	5	4	4	9		9	9		Mg ²⁺	(mg/L)	6	6	10	r
$\mathbf{K}_{^{+}}$	(mg/L)	_	1	1	-	-	1	^ 1	^	^	^	^ 1	^	1		1	1	f	<u>+</u> ×	(mg/L)	1	2	< 1	-
Na	(mg/L)	6	6	6	6	∞	6	∞	∞	9	9	5	9	8		∞	8		Na+	(mg/L)	11	11	12	-
Si	(mg/L)	4.9	5.4	8.9	8.7	8.4	9.8	5.0	4.9	7.9	7.3	7.0	7.0	4.6		4.9	5.1		Si	(mg/L) (14	12	14	1.2
Chl.a	(µg/L)	78	98	06	82	70	45	92	66	58	31	15	14	74		92	77		Chl.a	(hg/L)	2	2	5	,
PO ₄ -P	(mg/L)	0.002	0.002	0.005	0.004	0.005	0.004	0.002	0.002	0.003	0.004	0.008	0.007	0.002		0.003	0.002		PO4-P	(mg/L)	0.015	0.019	0.015	7100
dTP	(mg/L)	0.012	0.013	0.016	0.015	0.017	0.011	0.013	0.013	0.011	0.011	0.014	0.014	0.012		0.017	0.014	-	dTP	(mg/L)	0.018	0.021	0.017	010
TP	(mg/L)	0.10	0.12	0.076	0.081	0.087	0.15	0.11	0.14	0.081	0.073	0.063	0.088	0.11		0.10	0.12	İ	TL	(mg/L)	0.037	0.054	0.058	000
NO3-N	(mg/L) (< 0.01	0.09	1.11	1.03	1.47	1.51	< 0.01	< 0.01	0.95	0.99	0.76	0.74	< 0.01		< 0.01	< 0.01		NO3-N	(mg/L)	2.0	3.0	1.5	-
NO2-N	(mg/L)	< 0.01	< 0.01	0.03	0.03	0.02	0.02	< 0.01	< 0.01	0.02	0.01	0.01	0.02	< 0.01		< 0.01	< 0.01		NO2-N	(mg/L)	0.01	0.02	< 0.01	
NH4-N	(mg/L)	0.01	0.01	0.01	0.01	0.01	0.01	< 0.01	< 0.01	0.01	90.0	0.15	0.15	< 0.01		< 0.01	< 0.01	-	N-+N	(mg/L)	0.04	0.10	0.04	0
NTb	(mg/L)	0.30	0.35	1.4	1.4	1.7	1.8	0.28	0.28	1.2	1.2	1.0	1.1	0.28		0.33	0.29		NTb	(mg/L)	2.1	3.3	1.7	-
NT	(mg/L)	0.97	1.1	2.0	1.8	2.3	2.2	0.95	1.1	1.2	1.2	1.0	1.1	0.80		0.85	0.99		Z	(mg/L)	2.2	3.4	1.7	
DOC	(mg/L)	2.9	2.8	2.5	2.4	2.3	2.2	2.6	2.6	1.8	1.9	1.8	1.8	3.0		3.1	2.9		DOC	(mg/L)	1.3	1.7	1.4	-
TOC	(mg/L)	6.3	5.3	4.8	4.6	4.2	5.2	6.2	9.9	3.3	2.6	2.4	2.4	6.7		9.9	5.9		TOC	(mg/L)	1.3	1.9	1.6	-
doop	(mg/L)	4.2	4.0	3.6	3.7	3.7	3.3	3.9	3.9	2.9	3.0	3.2	3.3	4.7		8.4	4.5	Ī	doop	(mg/L)	2.1	2.7	2.4	,
COD	(mg/L)	Ξ	11	8.9	8.3	7.8	11	11	13	6.4	5.3	4.8	5.3	11		11	11	Ī	COD	(mg/L)	2.3	3.0	3.6	,
SS	(mg/L)	27	31	18	61	18	22	31	43	16	13	14	21	32	-	24	34		SS	(mg/L)	5	8	18	,
DO	(mg/L)	Ξ	11	14	14	12	8.6	13	Ξ	9.6	8.2	6.4	6.2	11		13	10		DO	(mg/L)	9.2	8.7	8.6	=
EC	(mS/m)	19.8	21.0	24.3	24.4	23.4	23.6	19.6	19.5	1.61	17.5	15.1	14.9	19.8		20.2	20.6		BC	(mS/m)	28.8	30.0	29.6	7 30
Hd	<u>-</u>	8.8	8.9	9.1	0.6	8.7	8.3	8.9	9.1	9.8	8.4	7.0	6.9	9.1		9.2	9.2		Hd	(-)	7.6	7.4	7.5	G
水温	(°C)	20.2	19.8	20.4	20.2	20.2	19.7	20.5	19.8	20.4	19.8	20.1	19.6	20.4		21.1	20.2		子 ء	(C)	20.6	20.5	22.3	4 0 1
透明度	(m)	9.0		0.7		0.7		9.0		0.7		0.7		0.5		0.5			透視度	(cm)	> 50	> 50	> 50	7
大深	(m)	1.5		1.6		1.7		1.3		1.9		1.4		1.3		2.3		r	光淡	(m)	0.7	9.0	0.3	-
時間		10:15		10:52		11:05		1123		11:41		10:00		10:30		10:40			光	(m ³ /s)	0.81	0.57	0.05	0
探水層		四日	上層	上層	四上	四山	四上	四日	四上	四二	四	四二	圖	上層	屋上	圏	上層		三 士		14:26	13:54	14:09	12.23
地点名		L1	. II	L2		L3	L3	L4	L4	L5	L5	- 9T	. 9T	L7		T.8	- 8T		地点名		RI	R2	R3	7
種類		類	瀬沼]	潮沼]	湖沼	湖沼	湖沿	瀬沼	瀬沼	類	類	湖沿	瀬沼 1	湖沼	湖沼	湖沼	瀬沼]		種類		第入河川 1	第入河川	流入河川	THE PERSON

水質調査結果一覧 (11月) 表8

12.6 °C

探水日: 令和5年11月14日

This continue	44	地点名	採水層	自由	水深	透明度	水僵	Hd	EC	DO	SS	COD	DT GOOD	TOC D	DOC	D NI	EN NLP	NH4-N	NO2-N NO3-N		TP dtp	ſP PO₄-P	.P Chl.a	a Si	Na +	$\mathbf{K}_{^{+}}$	Mg ²⁺	Ca ²⁺	a.	SO ₄ ²⁻
上端 14 14 15 15 15 15 15 15					(m)	(m)	(°C)	Ť	_	-	_	-		_	-		-		_	-	_	-	_		_	-	-	_	-	(mg/L)
	П		上層	10:13	1.5	9.0	13.5	7.9	24.7	6.6	23	6.6	4.0	5.1	2.4	1.2		0.01			_					01			14	31
 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 <		L1	四上				13.1	8.1	24.4	10	32	11	3.7	5.3	2.4	1.2	0.54	0.01								01			14	31
Fig. 1.1. 1.1. 2.4. 1.1. 2.3. 2.4. 1.1. 2.3. 2.4. 2.3. 2.4. <t< td=""><td></td><td>L2 </td><td>上層</td><td>10:50</td><td>1.5</td><td>0.5</td><td>13.6</td><td>8.2</td><td>25.1</td><td>11</td><td>20</td><td>8.7</td><td>3.6</td><td>4.5</td><td>2.3</td><td>1.3</td><td>0.80</td><td>0.01</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>01</td><td></td><td></td><td>15</td><td>32</td></t<>		L2	上層	10:50	1.5	0.5	13.6	8.2	25.1	11	20	8.7	3.6	4.5	2.3	1.3	0.80	0.01			_					01			15	32
Fig. 1.13 1.14 1.15 <t< td=""><td></td><td>L2 T</td><td>塵</td><td></td><td></td><td></td><td>13.3</td><td>8.2</td><td>24.7</td><td>11</td><td>23</td><td>8.7</td><td>3.7</td><td>4.7</td><td>2.3</td><td>1.2</td><td></td><td>0.01</td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td>01</td><td></td><td></td><td>14</td><td>32</td></t<>		L2 T	塵				13.3	8.2	24.7	11	23	8.7	3.7	4.7	2.3	1.2		0.01			~					01			14	32
 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		L3 I	上層	11:04	1.6	9.0	13.5	8.3	27.8	10	16	6.3	3.0	3.1	1.9	2.2	2.0		0.03		_								16	34
Fig. 11.2 <t< td=""><td> </td><td></td><td>屋上</td><td></td><td></td><td></td><td>12.8</td><td>8.2</td><td>28.0</td><td>10</td><td>23</td><td>8.9</td><td>3.1</td><td>3.3</td><td>1.8</td><td>2.3</td><td>2.0</td><td></td><td>0.03</td><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td><td>1</td><td></td><td>16</td><td>34</td></t<>			屋上				12.8	8.2	28.0	10	23	8.9	3.1	3.3	1.8	2.3	2.0		0.03							12	1		16	34
 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一番 一個 <l< td=""><td></td><td>Ė</td><td>四二</td><td>11:22</td><td>1.3</td><td>0.4</td><td>14.0</td><td>8.4</td><td>24.0</td><td>11</td><td>25</td><td>10</td><td>3.7</td><td>5.2</td><td>2.5</td><td>0.84</td><td>0.27</td><td></td><td>V</td><td></td><td></td><td></td><td></td><td></td><td></td><td>01</td><td></td><td></td><td>13</td><td>30</td></l<>		Ė	四二	11:22	1.3	0.4	14.0	8.4	24.0	11	25	10	3.7	5.2	2.5	0.84	0.27		V							01			13	30
EW 11.41 1.84 0.44 1.45 2.64 2.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 1.64 1.14 <th< td=""><td>I</td><td></td><td>四</td><td></td><td></td><td></td><td>13.5</td><td>8.5</td><td>23.6</td><td>11</td><td>25</td><td>11</td><td>3.9</td><td>5.5</td><td>2.4</td><td>0.87</td><td>0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>01</td><td></td><td></td><td>13</td><td>30</td></th<>	I		四				13.5	8.5	23.6	11	25	11	3.9	5.5	2.4	0.87	0.25									01			13	30
 下勝	Ι	Ċ	上層	11:41	1.8	0.4	14.0	8.8	26.3	12	26	8.8	3.2	4.6	1.9	1.2	1.0	0.01								11			15	32
 上陽 558 1.4 0.8 1.5 1.5<td>I</td><td></td><td>四上</td><td></td><td></td><td></td><td>13.5</td><td></td><td>26.4</td><td>12</td><td>26</td><td>8.2</td><td>3.0</td><td>4.3</td><td>1.8</td><td>1.4</td><td>1.1</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td>15</td><td>32</td>	I		四上				13.5		26.4	12	26	8.2	3.0	4.3	1.8	1.4	1.1	0.01								11			15	32
下層 不量 工具	Ι	Π	圖山	85:6	1.4	0.8	12.8	8.1	27.8	9.3	13	4.7	2.9	2.5	1.6	1.5	1.5	0.15	0.03							12	1		15	28
日曜 10.2 1.2 0.3 1.3 2.3 1.3 1.2 1.3 <td>I</td> <td></td> <td>四</td> <td></td> <td></td> <td></td> <td>12.9</td> <td>8.0</td> <td>27.4</td> <td>9.2</td> <td>13</td> <td>4.9</td> <td>2.7</td> <td>2.4</td> <td>1.6</td> <td>1.6</td> <td></td> <td>0.15</td> <td>0.03</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td>15</td> <td>28</td>	I		四				12.9	8.0	27.4	9.2	13	4.9	2.7	2.4	1.6	1.6		0.15	0.03							12			15	28
下層 下層 下層 一 <td>I</td> <td></td> <td>圖山</td> <td>10:27</td> <td>1.2</td> <td>0.5</td> <td>13.3</td> <td>8.2</td> <td>23.5</td> <td>10</td> <td>31</td> <td>10</td> <td>4.1</td> <td>5.2</td> <td>2.4</td> <td>0.75</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>01</td> <td></td> <td></td> <td>13</td> <td>29</td>	I		圖山	10:27	1.2	0.5	13.3	8.2	23.5	10	31	10	4.1	5.2	2.4	0.75										01			13	29
上層 1036 2.3 0.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 1.3 6.3 1.3 <td>I</td> <td></td> <td>屋上</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>-</td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	I		屋上						•	-	•		-						-			-								
下層 下層 不量	Ι		四山	10:36	2.3	0.5	13.6	8.3	23.0	10	31	==	4.3	5.3	2.5	0.72		V							9.	6			13	29
点 新 添 一	I		圍上				12.8	8.2	22.8	9.1	35	11	4.2	5.1	2.4		0.25	V	V						4.	6			13	29
44.28 0.02 0.04 0.03 0.04 <t< td=""><td></td><td><u> </u></td><td>=</td><td>車頻</td><td></td><td>条相度</td><td>米温</td><td>Hu</td><td>FC.</td><td>00</td><td>-</td><td>\vdash</td><td></td><td>Ė</td><td>-</td><td>-</td><td>H</td><td>-</td><td></td><td></td><td>-</td><td>\vdash</td><td></td><td></td><td>⁺cZ</td><td>-</td><td>MG 2+</td><td>Ç, 2+</td><td>,</td><td>SO,2-</td></t<>		<u> </u>	=	車頻		条相度	米温	Hu	FC.	00	-	\vdash		Ė	-	-	H	-			-	\vdash			⁺ cZ	-	MG 2+	Ç, 2+	,	SO,2-
14.28 0.22 0.6 > 50 14.2 8.2 3.0.1 1.9 1.2 1.0 0.05 0.01 1.8 0.03 0.01 1.8 0.03 0.01 1.8 0.03 0.01 1.8 0.03 0.01 1.8 0.03 0.01 0.04 0.03 0.04 0.043 0.025 0.04 0.025 0.04 0.043 0.025 0.04 0.043 0.025 0.04 0.043 0.025 0.04 0.043 0.043 0.044			,	(m ³ /s)		(cm)	(C)				_				_															(mg/L)
13.52 0.32 0.6 > 50 14.2 8.0 1	, iii	17	14:28	0.22	9.0		13.6	8.0	29.1		5	2.3	2.2	1.5	1.3	1.9		0.05	0.01	l	03.7		61:			12	-			38
14.09 0.1 0.2 0.8 >50 17.2 8.0 31.4 11 3 2.3 1.3 1.5 0.0 1.5 0.0 1.5 1.5 0.0 1.5 0.0 0.0 1.5 0.0 1.5 0.0 1.5 0.0 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 0.0 1.5 0.0 0.0 1.5 0.0 <td>ŀ</td> <td>22</td> <td>13:52</td> <td>0.32</td> <td>9.0</td> <td></td> <td>14.2</td> <td>8.2</td> <td>30.1</td> <td>6.6</td> <td>7</td> <td>3.1</td> <td>2.7</td> <td>1.8</td> <td>1.5</td> <td>2.6</td> <td></td> <td>0.10</td> <td>0.02</td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17</td> <td>39</td>	ŀ	22	13:52	0.32	9.0		14.2	8.2	30.1	6.6	7	3.1	2.7	1.8	1.5	2.6		0.10	0.02				20						17	39
13.27 0.2 0.8 5.50 13.0 8.2 27.9 11 3 2.3 2.3 1.5 1.5 1.5 1.5 1.5 0.01 0.01 0.01 0.01 1.5 0.030 0.022 0.018 2 1.5 1.5 1.5 2.8 2.8 2.8	Ť	છ	14:09	0.1	0.3		17.2	8.0	31.4	11	5	2.8	2.5	1.6	1.4	2.3	2.3	0.03	0.01				.48			1.1	1 10		17	27
	ř	44	13:27	0.2	0.8		13.0	8.2	27.9	Ξ	3	2.3	2.2	1.3	1.2	1.6			0.01				81						14	29

水質調査結果一覧(12月) 来9

12.0 °C

河道:

天気: 快晴

採水日: 令和5年12月6日

	î 8î	29	33	32	35	35	27	28	34	31	59	59	28	-	29	28	-2	_	Ũ	35	39	28	30
水深 透明度 水温 透明度 水温 25 COD 4COD TOC		13	15	15	91	15	13	13	15	14	15	15	13	-	13	13	G		(mg/L)	15	91	91	1.4
水深 透明度 水温 所 PD SS COD COD TOC TO Miss Mod (%C) CO CO CO TO CO CO TO CO TO CO TO CO TO CO																	j		(mg/L)				
水深 透明度 水温 透明度 水温 24.5 12 19 8.5 3.9 5.1 2.6 0.70 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05			25	25	27	26	22	23	28	26	27	12	23	·	23	23	2+	క	(mg/L)	27	87	67	,
大震 透明度 木温 pH EC DO SS COD dCOD TOC DOC TN dTN NH _a -N NO ₂ -N NO ₂ -N NO ₂ -N TP dTP PO _{a-P} Chla Si Na Na Na Na Na Na Na N	×	7	∞	8	6	6	7	7	6	8	∞	8	7		7	7	2+	N S	(mg/L)	9	6	10	c
大震 透明度 木温 pH EC DO SS COD dCOD TOC DOC TN dTN NH _a N NO ₁ -N NO ₂ -N NO ₃ -N TP dTP PO ₄ -P Chla Si Na [*]	1	-	1	1	1	2	1	1	1	1	1	1	1	-	1	1	+;	4	(mg/L)	1	2	1	
水深 透明度 水温 時日 EC DO GCOD dCOD TOC	10	10	10	10	11	11	6	10	11	10	12	12	10	-	10	10	+	g Z	(mg/L)	11	11	12	•
水深 透明度 水温 時日 EC DO SS COD dCOD TOC DOC TN MI-N NO ₂ -N NO ₃ -N TP dTP PO ₄ -P Chla (m) (m) (m) (m) (mg/L) (10	6.5	9.2	9.4	11	8.7	7.3	7.3	13	11	14	13	6.4	-	6.3	5.8	ë		(mg/L) (16	12	16	
水深 透明度 水温 色 DO SS COD dCOD TOC DOC TN dHN-N NO ₂ -N NO ₂ -N TP dTP PQ ₄ -P (m) (29	48	50	42	37	58	57	40	42	17	18	99	-	72	29			(µg/L)	2	3	4	ľ
水深 透明度 水温 PH BC DO SS COD TOC TOC TO TO MO-N NO-N NO-N TP dTP (m) (m) (m) (m) (m) (mg/L)		0.003	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	-	0.003	0.002	r 0		(mg/L) (1	0.018	0.021	0.016	
水深 透明度 水温 PH BC DO SS COD TOC DOC TN ATN NH-N NON NON TP (m)		0.013	0.010	0.010	0.010	0.009	0.012	0.012	0.008	0.008	0.008	800.0	0.013	•	0.014	0.013	Ę		(mg/L) (r	0.022	0.024	0.018	
大震 透明度			0.051	0.051	0.046	0.055	0.058	090.0	0.042	0.045	0.043	0.048	0.062	-	0.065	0.068	E		(mg/L) (n	0.040	0.070	0.037	
水深 透明度 水温 PH EC DO SS COD dCOD TO DOC TN dTN NH-N NO-N-N (m) (m) ("C") (-) (ms/m) (mg/L) <			1.4	1.4	2.0	2.1	0.25	0.23	1.5	1.5	1.2	1.2	0.11	•	0.16	0.10	X		(mg/L) (m	1.8	2.6	2.1	
水深 透明度 水温 PH EC DO SS COD dCOD TOC DOC TN dTN NH-N (m) (m) (°C) (·) (ms/L) (mg/L) <		< 0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	< 0.01	-	0.01	< 0.01	NO. N		(mg/L) (m	0.01	0.03	0.01	
水深 透明度 水温 PH EC DO SS COD dCOD TOC DOC TN dTN (m) (m) (°C) (·) (m) (mg/L) (mg/L) <t< td=""><td>_</td><td></td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.02</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.05</td><td>90.0</td><td>0.02 <</td><td>-</td><td>0.02</td><td>0.02 <</td><td>N IN IN</td><td></td><td>(mg/L) (m</td><td>0.06</td><td>0.23</td><td>0.04</td><td></td></t<>	_		0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.05	90.0	0.02 <	-	0.02	0.02 <	N IN IN		(mg/L) (m	0.06	0.23	0.04	
水深 透明度 水温 PH BC DO SS COD TOC DOC TN df (m) (m) (°C) (-) (mS/m) (mg/L)	_	0.46	1.5	1.6	2.1	2.2	0.50	0.49	1.6	1.6	1.4	1.4	0.35	•	0.45	0.38	F		(mg/L) (m	1.9	2.9	2.1	
水深 透明度 水温 PH EC DO SS COD dCOD TOC DOC (m) (m) (**C) (*) (m*M) (m*Q*L)	Ĺ		1.7	1.9	2.4	2.4	0.84	0.87	1.9	1.8	1.4	1.5	0.81	-	88.0	0.82	\vdash		(mg/L) (mg	1.9	3.0	2.2	
水深 透明度 水温 PH BC DO SS COD dCOD TOC (m) (m) (**C) (-) (m*S/m) (mg/L) (mg/L)<	-		2.2	2.2	1.8	1.8	2.5	2.5	1.6	1.6	1.9	1.7	2.6	-	2.6	2.6			(mg/L) (mg	1.5	1.4	1.4	
水深 透明度 水温 pH EC DO SS COD dCOD (mg/L) (5.2	3.8	3.8	3.1	3.0	4.7	4.7	2.9	2.9	2.6	2.6	5.2	-	5.1	5.1	201			1.7	1.8	1.7	
水深 透明度 水温 pH EC DO SS COD dCO (m) (m) (°C) (·) (mS/m) (mg/L) (mg/L)<		3.9	3.3	3.4	3.0	2.7	3.8	3.8	2.5	2.6	3.1	3.0	4.2	-	4.2	4.2	<u> </u>		(T/)	2.5	2.5	2.5	
水深 透明度 水温 pH EC DO SS CO (m) (m) (°C) (·) (mS/m) (mg/L) (mg/L	9		6.4	6.3	5.4	5.3	7.9	7.8	4.9	5.0	4.3	4.2	8.5	-	8.4	8.4	, c		(L) (mg/L)	2.6	3.1	2.9	
水深 透明度 水温 pH EC DO (m) (m) ("C) (-) (ms/m) (mg/L) ("C) 1.3 24.5 12	ì		=	11	11	12	16	15	11	11	∞	∞	19	-	18	19	H		(mg/L)	5	13	8	
水深 透明度 水温 pH EC (m) (m) (°C) (-) (mS/m) 2 1.5 0.6 10.1 7.3 24.5		12	13	13	12	12	13	12	13	13	==	11	12	-	13	12	H		(mg/L)	10	10	12	
水深 透明度 水温 pH (m) (m) (°C) (-) 2 1.5 0.6 10.1 7.3	_		4.0	5.7	3.5	3.7	8.1	24.5	4.8	3.3	2.0	3.3	24.0	-	1.1	1.2	-		n) (mg/L)	9.6	8.8	1.1	
水深 透明度 水温 pf (m) (m) (c) (-2 1.5 0.6 10.1			.7 26.	.7 26.	8.5 28.	8.5 28.	8.5 24.	8.6 24	8.7 28.	8.7 28.	6.8 29.	6.8 28.	8.4 24	-	.6 24.	.7 24.	Ē		(mS/m)	7.9 28.	8.1 28.	7.9 30.	
水深 透明度 水 (m) (m) (°c 2 1.5 0.6	_		.5	4 8.								9	1		8.	.8 9.	-	_	<u>-</u>)		1		
水深 透明 (m) (m) 2 1.5			10	10.4	10.1	9.5	7 10.7	10.5	8 10.5	6.6	9.6	9.6	5 10.		5 10.0	9.6			(၃)	0 12.6	8 12.	0.71 0	
2 (II 🔆	1		0.0		0.0		0.7		0.8		1.0		0.0		0.0		日平少	透視度	(cm)	> 50	28	> 50	
司):22			1.5		2.8		1.3		1.9		1.4		1.3		2.4		1000	米米	(m)	0.7	9.0	0.2	
時間 10:2	10:22		11:00		11:16		11:35		11:54		10:03		10:40		10:50		ni H	H,	(m ³ /s)	0.91	0.4	0.08	
探水層 上層	四		四日	屋上	四二	四上	上屋	四上	四二	四	四日	四上	上層	四	上層	四	H 12			14:32	13:50	14:15	
地点名 [1]	1.		1.2	L2	L3	L3	L4	L4	L5	. T2	Fe 97	. 9T	L7	. L7	F8	F8	4 4 41	另近名		R1	R2	R3	
種類			A S S S S S S S S S S S S S S S S S S S	湖沼 1	湖沼 I	湖沼 I	湖沼 I	類紹 工	類紹	類沿 I	類紹 I	類紹 工	類紹 I	類招 I	M 沿	類器 I	F	種類		流入河川 F	流入河川 F	流入河川 F	

水質調査結果一覧 (1月) 表 10

C 6.9

探水日: 令和6年1月10日

_		С	С	0		_	_	С	С	~	3	0	6	С		С	0	_		_	5	2	7	_
SO ₄ ²⁻	(mg/L)	30	30	30	30	31	31	30	30	33	33	29	29	30		30	30	2,	SO4	(mg/L)	35	35	27	31
Ċ	(mg/L)	15	15	15	15	16	16	15	15	16	15	16	15	15	-	15	15		ŭ	(mg/L)	15	16	16	15
Ca ²⁺	(mg/L)	27	27	27	27	28	28	27	28	29	29	30	29	27	-	27	27	÷	Ca	(mg/L)	29	28	28	31
Mg ²⁺	(mg/L)	8	6	6	6	6	6	6	6	10	10	6	6	6	-	6	6	ť	Mg	(mg/L)	10	6	10	8
±×	(mg/L)	1	1	1	1	1	1	1	1	1	1	< 1	< 1	1	-	1	1	F	¥	(mg/L)	1	1	1	< 1
Na +	(mg/L)	11	11	11	11	12	12	11	11	12	12	13	13	11		11	11	4	Na	(mg/L) (12	12	18	13
Si	(mg/L)	9.4	9.2	9.2	9.3	12	12	7.6	6.7	13	13	12	13	8.8	-	0.6	8.8	-	Si	(mg/L) (18	11	61	17
ChLa	(μg/L) (30	29	29	30	33	34	32	32	42	44	22	22	24	-	32	32	-	Chl.a	(μg/L) (3	4	1	2
PO4-P	(mg/L) (0.003	0.003	0.004	0.003	0.005	0.005	0.003	0.003	0.004	0.004	0.005	0.005	900.0	-	0.003	0.004	-	PO4-P	(mg/L) (0.021	0.020	0.048	0.012
dTP I	(mg/L)	0.010	0.010	0.011	0.011	0.012	0.012	0.011	0.011	0.012	0.012	0.010	0.009	0.009		0.010	0.009	F	dTb	(mg/L) (0.024	0.028	0.051	0.019
TP	(mg/L)	0.057	0.058	890.0	0.070	0.065	0.070	990.0	0.083	0.072	0.080	0.054	0.051	0.056	-	0.073	890.0	-	TP	(mg/L) (0.040	0.064	0.060	0.028
NO3-N	(mg/L)	0.61	0.63	0.81	0.81	2.0	2.0	0.67	0.67	1.3	1.3	1.4	1.4	09.0	-	0.63	0.64	-	NO3-N	(mg/L) (1.4	2.1	2.9	1.7
NO2-N	(mg/L)	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.01	-	0.01	0.01	- 1-	NO ₂ -N	(mg/L) (0.01	0.03	0.01	< 0.01
NH4-N	(mg/L)	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.03	0.01	0.02	0.03	0.03	0.01	-	0.03	0.03		N-4N	(mg/L) (0.06	0.13	0.03	0.01
dTN 1	(mg/L)	0.95	0.91	1.1	1.1	2.1	2.1	86.0	0.97	1.4	1.5	1.6	1.6	0.89	-	0.97	0.95	H	ULD V	(mg/L) (1.6	2.4	3.0	1.8
TN	(mg/L)	1.3	1.3	1.5	1.5	2.5	2.5	1.3	1.5	1.8	1.8	1.6	1.7	1.1	-	1.3	1.2		Z	(mg/L) (1.7	2.5	3.1	1.9
DOC	(mg/L) (2.5	2.5	2.5	2.5	1.8	1.8	2.4	2.4	1.7	1.7	1.7	1.6	2.6	-	2.6	2.5		DOC	(mg/L) (1.2	1.8	1.4	1.4
TOC	(mg/L)	4.4	4.4	4.4	4.4	3.1	3.2	4.5	4.6	3.3	3.8	2.5	2.4	4.4	-	4.4	4.5		TOC	(mg/L)	1.4	2.0	1.4	1.4
doop	(mg/L)	4.0	3.7	3.8	3.9	2.9	3.0	3.7	3.7	2.7	2.5	2.9	2.9	4.4	-	4.4	4.4		dcop	(mg/L) (2.0	2.9	2.1	2.1
COD	(mg/L) (7.4	7.2	7.3	7.3	5.8	6.1	7.6	8.0	6.3	6.9	4.5	4.6	7.3	-	7.7	7.6	H	COD	(mg/L) (2.2	3.2	2.2	2.4
SS	(mg/L) (10	12	10	12	13	15	15	18	16	22	7	7	16	-	16	17		SS	(mg/L) (3	8	2	3
90	(mg/L) (11	12	12	12	12	12	12	12	13	13	13	13	11	-	11	11		8	(mg/L) (12	11	14	12
EC	(mS/m)	28.3	28.2	28.1	27.9	29.4	29.5	28.1	28.0	29.5	29.6	30.9	30.0	27.6		27.7	27.6		2	(m/Sm)	30.0	30.4	31.7	30.1
Hd	(-)	7.2	7.3	7.4	7.5	7.5	7.5	7.5	7.6	7.9	7.9	7.5	7.4	7.4	-	7.4	7.4	-	μd	·	7.8	8.0	7.8	8.0
水温	(°C)	8.9	6.4	8.9	9.9	6.5	6.2	7.7	7.2	7.8	7.1	7.5	6.4	8.9	-	7.0	6.7	!	· · · · · · · · · · · · · · · · · · ·	(C)	7.8	8.1	13.1	7.5
透明度	(m)	0.7		0.7		0.7		0.7		9.0		1.0		9.0		0.7		1	透視度	(cm)	> 50	39	> 50	> 50
光淡	(m)	1.5		1.5		1.8		1.3		1.8		1.3		1.2		2.3			然长	(m)	0.4	9.0	0.2	8.0
三 金		10:20		11:05		11:20		11:38		11:55		10:08		10:40		10:50		1	順	(m ³ /s)	0.92	0.5	0.15	0.17
松水層		上層	下層	上層	圖上	上層	上層	上層	上層	上層	下層	国	下層	四四日	下層	上層	塵	┝	聖世	_	14:49	14:12	14:31	13:45
地点名		L1	L1	L2	L2	L3	Г3	L4	L4	L5	LS	Г 9T	L 97	L7	L7	L8	L8	-	地点名		R1	R2	R3	R4
種類																			種類 力		流入河川 R	流入河川 R	流入河川 R	流入河川 R
Ľ.		強紹	凝恕	凝恕	強紹	湖沼	強紹	凝恕	湖沿	強紹	湖沿	強紹	湖沼	湖沼	湖沼	湖沿	湖沼	L	- 1		润	消	消	润

採水日: 令和6年2月7日

表 11 水質調査結果一覧 (2月)

SO ₄ ²⁻	(mg/L)	28	28	28	28	27	28	27	28	29	29	26	26	28		28	28	SO ₄ ²⁻	(mg/L)	23	31	25	26
Ċ.	(mg/L)	15	15	15	15	15	15	14	14	15	15	14	14	14		15	15	C,	(mg/L)	18	16	19	17
Ca ²⁺	(mg/L)	25	26	26	26	25	26	26	26	26	27	26	26	25	-	25	26	Ca ²⁺	(mg/L)	21	27	28	23
Mg ² +	(mg/L)	∞	6	∞	∞	∞	∞	8	∞	8	6	∞	∞	∞		6	∞	Mg ²⁺	(mg/L)	9	7	4	9
$ abla^{+}$	(mg/L)	1	1	1	1	1	1	1	1	1	1	^ 1	< 1	1	-	1	1	$ \succeq^{+} $	(mg/L)	-	1	4	< 1
Na +	(mg/L)	11	11	11	11	11	11	11	11	11	11	11	11	11	-	11	11	Na +	(mg/L)	10	10	14	13
Si	(mg/L)	8.3	8.3	9.6	9.4	10	10	9.8	8.5	11	11	12	11	8.5	-	8.7	8.5	Si	(mg/L)	11	6.6	10	15
Chl.a	(µg/L)	32	37	32	34	37	38	34	37	44	42	14	18	45	-	37	38	Chl.a	(µg/L)	2	2	17	9
PO ₄ -P	(mg/L)	0.001	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.004	0.005	0.001		0.002	0.001	PO ₄ -P	(mg/L)	0.009	0.029	0.002	0.009
dTP	(mg/L)	0.010	0.011	0.011	0.010	0.010	0.011	0.010	0.011	0.013	0.012	0.010	0.012	0.011		0.010	0.010	dTP	(mg/L)	0.018	0.033	0.007	0.017
TP	(mg/L)	0.048	0.052	0.045	0.052	0.054	0.069	0.050	090.0	090.0	0.058	0.039	0.068	0.055		0.047	0.058	TP	(mg/L)	0.048	0.085	0.064	0.043
NO3-N	(mg/L)	0.82	0.82	1.4	1.4	1.7	1.7	0.84	98.0	1.2	1.2	1.3	1.4	0.81		0.81	0.81	NO3-N	(mg/L)	1.2	1.8	4.9	1.3
NO2-N	(mg/L)	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.01		0.01	0.01	NO2-N	(mg/L)	0.02	0.03	0.32	0.01
NH4-N	(mg/L)	0.01	0.01	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.05	90.0	0.01	-	0.02	0.02	NH4-N	(mg/L)	0.18	0.19	0.09	0.07
NTb	(mg/L)	96.0	0.99	1.5	1.5	1.7	1.7	0.94	0.95	1.2	1.3	1.4	1.4	96.0		0.93	0.92	MTb	(mg/L)	1.5	2.0	5.3	1.4
Z	(mg/L)	1.3	1.3	1.6	1.7	1.8	1.8	1.3	1.4	1.6	1.5	1.4	1.7	1.4		1.3	1.3	Z.	(mg/L)	1.6	2.0	5.3	1.4
DOC	(mg/L)	2.3	2.3	2.1	2.1	1.9	1.9	2.3	2.3	1.7	1.6	1.5	1.5	2.3	-	2.3	2.3	DOC	(mg/L)	1.9	1.9	2.5	1.5
TOC	(mg/L)	3.5	3.5	3.2	3.2	2.8	2.9	3.4	3.3	2.7	2.7	1.9	1.9	3.5		3.4	3.4	T0C	(mg/L)	2.3	2.4	2.6	1.7
dcob	(mg/L)	3.6	3.8	3.6	3.5	2.9	3.0	3.8	3.8	3.0	3.0	2.7	2.6	4.1		4.1	4.1	dcob	(mg/L)	3.6	3.5	4.2	2.6
COD	(mg/L)	7.0	6.9	6.3	6.5	0.9	6.3	9.9	6.9	0.9	5.5	3.8	4.2	7.4		6.9	7.1	COD	(mg/L)	3.9	3.8	5.3	3.0
SS	(mg/L)	7	10	∞	10	10	12	10	11	6	6	5	7	15		10	13	SS	(mg/L)	9	7	18	3
8	(mg/L)	12	13	13	14	13	13	13	13	14	14	13	14	13		13	13	90	(mg/L)	Ξ	12	12	14
EC	(m/Sm)	27.0	27.6	27.6	27.3	27.5	27.5	26.9	27.0	27.2	26.9	27.8	27.1	27.1		27.1	26.9	EC	(m/Sm)	22.7	27.9	27.6	25.0
Hd	<u>·</u>	7.0	7.2	7.6	7.8	8.0	7.9	8.1	8.0	8.1	8.3	6.3	6.4	7.4		7.5	7.6	Hd	<u> </u>	7.9	7.9	8.0	8.1
平温	(0°)	0.9	5.5	6.3	5.5	5.5	5.0	6.4	5.4	6.4	5.5	5.8	5.3	6.3		0.9	5.4	水温	(Ç	9.5	8.0	9.5	8.5
透明度	(m)	0.0		1.5		0.8		0.8		0.7		1.6		0.7		0.8		透視度	(cm)	41	42	32	> 50
光米	(m)	1.6		1.7		1.8		1.5		2.0		1.5		1.3		2.4		大祭	(m)	6.0	9.0	0.3	1.0
聖士		10:40		11:18		11:33		11:53		12:13		10:25		10:56		11:06		遍	(m ³ /s)	0.95	0.59	0.18	0.45
探水層		四四日	四上	四日	四上	曜日	四上	四日日	塵	四日	四上	四日日	四半	四日	上層	四日	四	皇士		14:41	14:05	14:22	13:40
地点名		L1	L1	L2	L2	L3	L3	L4	7	L5 L	L5	Г 9T	L 97	L7]	L7	F8 7	L8 1	地点名		RI	R2	R3	R4
種類																		種類		流入河川 R	流入河川 R	流入河川 R	流入河川 R
H4-		湖沿	遊船	湖沿	強紹	強犯	強紹	強犯	湖沿	湖沼	強犯	斑岩	強紹	強紹	強治	強犯	類紀			汽汽	泥	流入	泥

水質調査結果一覧 (3月) 表 12

7.7 °C

探水日: 令和6年3月5日

	$\overline{}$	27	27	27	27	29	29	27	27	28	28	24	24	27		27	27	Г	_	(35	30	28	23
SO_4^{2-}	(mg/L)	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2	ľ	SO_4^{2}	(mg/L)	3	3	2	2
CĹ	(mg/L)	15	15	51	15	17	LI	91	91	17	17	13	13	15	-	15	15		C	(mg/L)	16	14	15	11
Ca ²⁺	(mg/L)	26	25	97	25	72	12	97	97	26	56	23	24	25	-	25	25		Ca^{2+}	(mg/L)	72	25	31	24
${\rm Mg}^{2+}$	(mg/L)	8	8	8	8	8	8	8	8	8	8	7	7	8	-	8	8		${ m Mg}^{2^+}$	(mg/L)	6	7	10	9
-	(mg/L)	2	2	2	2	2	2	2	2	2	2	1	1	2	-	2	2	ľ	+⊻	(mg/L)	2	2	1	1
-	(mg/L) (11	11	11	11	13	13	11	11	12	12	10	10	11		11	11	ŀ	Na	(mg/L) (11	10	12	6
Si	(mg/L)	6.4	6.1	6.2	6.5	8.0	8.1	6.4	9.9	8.6	8.7	7.4	7.3	6.5		6.3	6.4		Si	(mg/L)	15	9.6	17	10
Chl.a	(µg/L)	31	33	36	36	59	19	36	36	55	54	35	35	32	-	33	33		Chl.a	(µg/L)	8	6	18	5
PO ₄ -P	(mg/L)	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.001	0.003	0.003	0.003	0.003	0.001	-	0.002	0.001		PO4-P	(mg/L)	0.019	0.020	0.016	0.011
dTP	(mg/L)	0.009	0.009	0.009	0.009	0.010	0.010	0.010	0.010	0.011	0.010	0.011	0.010	0.008	-	0.009	0.008		dТР	(mg/L)	0.025	0.028	0.019	0.016
TP	(mg/L)	0.066	0.070	0.069	0.073	0.077	0.072	0.066	0.077	0.077	0.085	0.084	0.082	0.060	-	0.069	0.068		TP	(mg/L)	0.057	0.075	0.13	0.031
	(mg/L)	0.58	0.58	0.64	0.64	86.0	0.97	0.50	0.50	69.0	0.72	0.71	0.71	0.59	-	09.0	09.0		NO3-N	(mg/L)	1.3	1.6	2.0	1.1
_	(mg/L)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-	0.01	0.01		NO2-N	(mg/L)	0.01	0.03	0.01	< 0.01
	(mg/L)	0.01	0.01	0.02	0.02	< 0.01	< 0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01		0.01	0.02	- 1-	NH4-N	(mg/L)	0.07	0.13	0.05	0.02
-	(mg/L)	0.78	0.75	98.0	0.80	1.1	1.1	89.0	69.0	0.84	0.88	0.87	0.88	0.74	-	0.74	0.76	٠ ١	NTb	(mg/L)	1.5	1.7	2.1	1.1
-	(mg/L) (0.96	1.1	1.1	1.1	1.5	1.5	1.0	1.1	1.2	1.3	1.1	1.1	1.1	-	1.1	1.1	-	Z	(mg/L) (1.5	1.8	2.1	1.1
\vdash	(mg/L)	2.6	2.6	2.5	2.5	2.2	2.2	2.6	2.6	2.1	2.1	2.3	2.2	2.6		2.6	2.6		DOC	(mg/L)	1.4	1.8	1.0	1.3
TOC	(mg/L)	4.2	4.2	4.2	4.2	4.7	4.8	4.5	4.5	4.2	4.2	3.5	3.4	4.1		3.9	4.2		TOC	(mg/L)	1.8	2.2	2.2	1.4
doop	(mg/L)	4.1	4.1	4.1	4.2	3.6	3.4	4.2	4.3	3.7	3.8	4.1	4.0	4.4	-	4.4	4.6		doop	(mg/L)	2.9	3.3	2.0	2.4
	(mg/L)	7.7	7.6	8.0	7.8	8.2	8.5	8.4	8.3	7.8	7.4	6.7	6.7	7.6		7.6	7.5		COD	(mg/L)	3.3	4.0	6.3	2.6
SS	(mg/L)	17	17	20	21	20	21	18	19	17	20	16	18	19		19	20		SS	(mg/L)	9	6	52	2
_	(mg/L)	11	11	11	11	13	13	12	11	13	13	12	12	11		11	11	ŀ	DO	(mg/L)	11	11	12	12
	(m/Sm)	26.5	26.7	26.9	27.0	28.2	28.3	27.3	27.0	27.3	27.2	24.5	24.5	26.6	-	26.6	26.7	ŀ	BC	(mS/m)	29.3	31.0	25.6	24.0
	·	7.0	7.1	7.7	7.7	7.9	8.2	8.6	8.5	8.4	8.6	6.7	9.9	7.4		7.3	7.3	+	Hd	(-)	7.8	7.7	7.9	8.0
州	(°C)	9.5	9.5	9.4	9.6	9.7	10.0	9.5	8.6	6.6	10.0	10.0	10.1	9.5	•	9.6	9.7	+	水温	(C)	10.3	12.0	10.5	8.5
透明度	(m)	0.7		9.0		9.0		0.7		0.7		8.0		0.7		0.7		+	透視度	(cm)	> 50	> 50	> 50	> 50
	(m)	1.6		1.6		2.9		1.5		2.0		1.6		1.3		2.4		· Ի	光紫光	(m)	0.7	0.2	9.0	1.0
- 自細		9:20		9:52		10:06		10:24		10:42		80:6		9:32		9:40		·	端	(m ³ /s)	0.62	0.14	0.38	0.27
探水層		上層	圏	下層	屋上	上層	屋上	上層	下層	上層	下層	下層	屋上	国	下層	上層	上層	+	計量		13:20	13:00	12:50	12:25
地点名		L1 1	L1	L2 J	L2 T	Г3	L3 T	L4	L4	LS	L5	F 97		L7]	L7	F8 P	L8 1	+	地点名		R1	R2	R3	R4
種類																		· [種類		流入河川 R	流入河川 R	流入河川 R	流入河川 R
L		強犯	強紹	湖沼	強紹	湖沿	湖沿	湖沿	湖沼	斑岩	強犯	湖沿	強紹	強紹	湖沼	湖沿	強紹	L			消	润	消	消